Answer:
I think the answer might be false. Im not 10% sure. Good luck though!
Explanation:
<h2>Answer is "long chain fatty acids"</h2>
Explanation:
- A fatty acid is one of the major components of a triglyceride, which is a form of lipid that is used in the body to store energy. A lipid is just a type of molecule that includes, among other things, fatty acids. Triglycerides are a secondary energy source that the body can use in the event that there is not enough sugar (our primary energy source) in the system. While fatty acids vary in terms of chemical characteristics, they all have some basic qualities in common.
- Hence the right answer for the fill up the blank is "long chain fatty acids"
Answers:
a) carcinogenic
b) anti-carcinogenic
c) carcinogenic
d) carcinogenic
e) carcinogenic
f) anti-carcinogenic
g) anti-carcinogenic
h) anti-carcinogenic
Explanation:
Cyclins are proteins that regulate the progression through the cell cycle, i.e., the transition of G1 to S phase. It is well known that high cyclin expression may lead to cell proliferation states, which is closely associated with cancer progression. Moreover, the blockage of cyclins may have an anti-carcinogenic effect by inhibiting the progression through the cell cycle. MAP kinases are serine/threonine kinases that regulate the progression through the cell cycle by phosphorylating a variety of substrates during cell proliferation. In consequence, phosphatases that inactivate MAPK kinases (i.e., by dephosphorylation) may have an anticarcinogenic effect. The p53 is a tumor suppressor protein involved in diverse cellular processes including DNA repair, cycle arrest and programmed cell death. This protein (p53) is activated by phosphorylation at target residues and phosphatases inactivate it, thereby the blockage of its degradation may have an anticarcinogenic effect. Oncogene activation (i.e., the expression of oncogenes), may alter diverse cellular processes including DNA replication, and thereby may lead to cancer development. The G-protein α subunit is a GTPase that hydrolyses GTP and thus has a major role in controlling the kinetics of the G-protein signaling cascade. Platelet-derived growth factor receptors (PDGFR) are kinase receptors that play roles in regulating cellular differentiation, cell proliferation and cell growth. PDGFR receptors are present on the surface of normal cells, however, it has been shown that mutations of the PDGFR genes that lead to their high expression lead to uncontrolled cell growth and consequently cause cancer (i.e., by increasing PDGF signaling).
<span>Dr. Nelson studies the psychological factors that seem to be associated with the development of heart disease. Dr. Nelson specializes in health psychology.</span>
Answer:
Chlorophyll molecules donate electrons to an electron acceptor in the reaction center.
Explanation:
Light reaction of photosynthesis takes place in the reaction centre. Light reaction may comprises of several proteins such as pheophytin, chlorophyll and quinones which act as light absorbing molecules.
The light reaction is the core of photosynthesis that produces ATP and NADPH to carry out the dark reaction for the production of high energy carbon molecules. During light reaction light photons are captured by photosystems such as photosystem I and II of chlorophyll in green plants. This photon cause the excitation of electron that flows through the electron transport chain from higher potential to lower potential and energy released by it is utilized for creating the gradient potential of H+ ions across the membrane. This gradient potential difference of H+ ions is used for the production of ATP through ATP synthase complex.
So chlorophyll molecules donate electrons to electron acceptors through the excitation of electrons from light photons in the reaction center.