The pentagon is the one with 5 sides. Good Luck!
Yes, you can; based on the inherent assumption that the "two radicals that have negative values" are, in fact, "imaginary numbers" .
Take, for example, the commonly known "imaginary number": "i" ; which represents the "imaginary number" ; " √-1 " .
Since: "i = √-1" ;
Note that: " i² = (√-1)² = √-1 * √-1 = √(-1*-1) = √1 = 1 .
__________________________________________________
In this item, we are to calculated for the 6th term of the geometric sequence given the initial value and the common ratio. This can be calculated through the equation,
An = (A₀)(r)ⁿ ⁻ ¹
where An is the nth term, A₀ is the first term (in this item is referred to as t₀), r is the common ratio, and n is the number of terms.
Substitute the known values to the equation,
An = (5)(-1/2)⁶ ⁻ ¹
An = -5/32
Hence, the answer to this item is the third choice, -5/32.
Answer:
18
Step-by-step explanation:
<em>Convert</em><em> </em><em>the</em><em> </em><em>mixed</em><em> </em><em>number</em><em> </em><em>to</em><em> </em><em>an</em><em> </em><em>improper</em><em> </em><em>fraction</em><em> </em><em>9</em><em>/</em><em>2</em><em>÷</em><em>1</em><em>/</em><em>4</em>
<em>Reduce</em><em> </em><em>the</em><em> </em><em>numbers</em><em> </em><em>with</em><em> </em><em>the</em><em> </em><em>greatest</em><em> </em><em>common</em><em> </em><em>factor</em><em> </em><em>2</em><em> </em>
<em>and</em><em> </em><em>then</em><em> </em><em>multiply</em><em> </em><em>the</em><em> </em><em>numbers</em><em> </em><em>9</em><em>×</em><em>2</em><em>=</em><em>18</em><em> </em><em>✅</em>
There is no solution to this system of linear equations