The answer to this question is C
erythrocytes- a red blood cell that (in humans) is typically a biconcave disc without a nucleus. Erythrocytes contain the pigment hemoglobin, which imparts the red color to blood, and transport oxygen and carbon dioxide to and from the tissues.
leukocytes- a colorless cell that circulates in the blood and body fluids and is involved in counteracting foreign substances and disease; a white (blood) cell. There are several types, all amoeboid cells with a nucleus, including lymphocytes, granulocytes, monocytes, and macrophages.
Answer:
Krebs cycle, tricarboxylic acid cycle.
Explanation:
Cellular respiration is what cells do to break up sugars to get energy they can use. ... Usually, this process uses oxygen, and is called aerobic respiration. It has four stages known as glycolysis, Link reaction, the Krebs cycle, and the electron transport chain.
Cellular respiration is a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from oxygen molecules[1] or nutrients into adenosine triphosphate (ATP), and then release waste products.[2] The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy because weak high-energy bonds, in particular in molecular oxygen,[3] are replaced by stronger bonds in the products. Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions. Although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a living cell because of the slow, controlled release of energy from the series of reactions.
Nutrients that are commonly used by animal and plant cells in respiration include sugar, amino acids and fatty acids, and the most common oxidizing agent providing most of the chemical energy is molecular oxygen (O2).[1] The chemical energy stored in ATP (the bond of its third phosphate group to the rest of the molecule can be broken allowing more stable products to form, thereby releasing energy for use by the cell) can then be used to drive processes requiring energy, including biosynthesis, locomotion or transport of molecules across cell membranes.
Cellular respiration inputs are glucose and oxygen. The answer is O2.
Cellular respiration happens inside mitochondria. Meanwhile, the output is carbon dioxide, water, energy, and (ATP) adenosine triphosphate. It is a chemical process to extract nutrients and release waste substances.
Being able to understand classifications is an important life skill because in all spheres of life, there is some sort of clasification that can be used as a good estimate that can help us decide on many things. It's always good, for example, to be able to decide on whether a particular mushroom is eatable or not (these are classified into healthy and poisonous ones).