1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WARRIOR [948]
3 years ago
14

How to find area of a triangle ​

Mathematics
2 answers:
aliya0001 [1]3 years ago
8 0

Answer:

Base × Height ÷ 2

Otrada [13]3 years ago
5 0

Answer:

Hope this helps! :)

You might be interested in
Find the surface area<br> Will give brainliest to first answer!!!!
user100 [1]
120 I think I’m not sure
7 0
2 years ago
Find the work done when a crane lifts a ​-pound boulder through a vertical distance of feet. Round to the nearest​ foot-pound.
goldenfox [79]

Answer:

72000ft-1b

hope it helps

please mark brainliest

8 0
3 years ago
How do I do this problem <br> -6(x+1)-18=26+4
pogonyaev

Answer:

x=-9

Step-by-step explanation:

Step 1: Simplify both sides of the equation.

−6(x+1)−18=26+4

(−6)(x)+(−6)(1)+−18=26+4(Distribute)

−6x+−6+−18=26+4

(−6x)+(−6+−18)=(26+4)(Combine Like Terms)

−6x+−24=30

−6x−24=30

Step 2: Add 24 to both sides.

−6x−24+24=30+24

−6x=54

Step 3: Divide both sides by -6.

−6x

−6

=

54

−6

x=−9

Answer:

x=−9

5 0
3 years ago
ILL GIVE EVERYTHING IF U GET IT RIGHTTT
Veronika [31]

Answer:

A

Step-by-step explanation:

Because if you did the math it's A

I'm 100% Sure

6 0
2 years ago
Read 2 more answers
What is the best approximation of the projection of (5,-1) onto (2,6)?
Hatshy [7]

Answer:

Hence, the scalar projection of \vec a onto \vec b= \frac{\sqrt{10} }{5}, and  the vector projection of \vec a onto \vec b = \frac{1}{5} \hat i+\frac{3}{5} \hat j.

Step-by-step explanation:

We have given two points  (5, -1) and (2, 6).

Let,     \vec a=5\hat {i}-\hat {j}  and  \vec b= 2\hat {i}+6\hat{j} .

and we have calculate the projection of \vec a onto \vec b.

Now,

For the calculation of projection, first we need to calculate the dot product of  \vec a  and \vec b.

\vec a.\vec b=(5\hat {i}-\hat{j}).(2\hat{i}+6\hat{j})

     =10-6

     =4

then, we have to calculate the magnitude of \vec b.

   \mid {\vec {b}}\mid = \sqrt{2^{2}+6^{2}  } = \sqrt{40} = 2\sqrt{10}.

Now, the scalar projection of \vec a onto \vec b = \frac{\vec a.\vec b}{\mid b\mid}

                                                                 = \frac{4}{2\sqrt{10} }\frac{2}{\sqrt{10} } \times\frac{\sqrt{10} }{\sqrt{10} } =\frac{2\sqrt{10} }{10} = \frac{\sqrt{10} }{5}

and the vector projection of \vec a onto \vec b = \frac{\vec a. \vec b}{\mid\vec b \mid^{2} } . \vec b

                                                               = \frac{4}{40} . (2\hat i+ 6\hat j)

                                                                = \frac{1}{5} \hat i+\frac{3}{5} \hat j

Hence, the scalar projection of \vec a onto \vec b= \frac{\sqrt{10} }{5}, and  the vector projection of \vec a onto \vec b = \frac{1}{5} \hat i+\frac{3}{5} \hat j.

                                                               

6 0
3 years ago
Other questions:
  • Help please asap :))
    15·1 answer
  • Beatriz purchases a sweater that cost $24.99 and seles tax8%. What is the total cost?
    12·2 answers
  • The cost of oranges in a grocery store is directly proportional to the number of oranges purchased. Jerri payed $2.52 for 6 oran
    15·1 answer
  • Simplify the ratio 24/56
    5·2 answers
  • I need answers please​
    12·1 answer
  • Even integers from 11 and 111​
    13·1 answer
  • Identify the figure
    11·1 answer
  • How much greater is the average temperature on Earth the the average temperature on Jupiter? Jupiter's temperature is -166, Eart
    5·1 answer
  • 5log5 (17)What the steps to this problem because I don’t understand
    10·2 answers
  • At which values of x does the function F(x) have a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!