Answer:: The family budget to make the one-way trip should be $70. Since, they need 20 gallons for driving out of state to her grandmother's house
Step-by-step explanation:
Answer:
x is 30
Step-by-step explanation:
1/2 ( x + 6 ) = 18
1/2x + 3 = 18
- 3 - 3
1/2x = 15
· 2 · 2
x = 30
You just simply multiply 434×310 will give you your answer
The answer is D.) (4,3)
trace the line to where the middle of the point looks to be and then find the point. in this instance the segment is 12 points long so the middle would be at six but because it is shifted over to the left 2 points the x coordinate would be 4. Since the line is parallel with the x axis you know that the y coordinate has to be 3. So the answer is (4,3)
Answer:
![P(C=1|T=1)=q(\sum_{i=15}^{20}\binom{20}{i} p^i(1-p)^{20-i})( \sum_{i=15}^{20}\binom{20}{i}[qp^i(1-p)^{20-i} + (1-q)p^{20-i}(1-p)^i])^{-1}](https://tex.z-dn.net/?f=P%28C%3D1%7CT%3D1%29%3Dq%28%5Csum_%7Bi%3D15%7D%5E%7B20%7D%5Cbinom%7B20%7D%7Bi%7D%20p%5Ei%281-p%29%5E%7B20-i%7D%29%28%20%5Csum_%7Bi%3D15%7D%5E%7B20%7D%5Cbinom%7B20%7D%7Bi%7D%5Bqp%5Ei%281-p%29%5E%7B20-i%7D%20%2B%20%281-q%29p%5E%7B20-i%7D%281-p%29%5Ei%5D%29%5E%7B-1%7D)
Step-by-step explanation:
Hi!
Lets define:
C = 1 if candidate is qualified
C = 0 if candidate is not qualified
A = 1 correct answer
A = 0 wrong answer
T = 1 test passed
T = 0 test failed
We know that:

The test consist of 20 questions. The answers are indpendent, then the number of correct answers X has a binomial distribution (conditional on the candidate qualification):

The probability of at least 15 (P(T=1))correct answers is:

We need to calculate the conditional probabiliy P(C=1 |T=1). We use Bayes theorem:

![P(T=1)=q\sum_{i=15}^{20}f_1(i) + (1-q)\sum_{i=15}^{20}f_0(i)\\P(T=1)=\sum_{i=15}^{20}\binom{20}{i}[qp^i(1-p)^{20-i} + (1-q)p^{20-i}(1-p)^i)]](https://tex.z-dn.net/?f=P%28T%3D1%29%3Dq%5Csum_%7Bi%3D15%7D%5E%7B20%7Df_1%28i%29%20%2B%20%281-q%29%5Csum_%7Bi%3D15%7D%5E%7B20%7Df_0%28i%29%5C%5CP%28T%3D1%29%3D%5Csum_%7Bi%3D15%7D%5E%7B20%7D%5Cbinom%7B20%7D%7Bi%7D%5Bqp%5Ei%281-p%29%5E%7B20-i%7D%20%2B%20%281-q%29p%5E%7B20-i%7D%281-p%29%5Ei%29%5D)
![P(C=1|T=1)=q(\sum_{i=15}^{20}\binom{20}{i} p^i(1-p)^{20-i})( \sum_{i=15}^{20}\binom{20}{i}[qp^i(1-p)^{20-i} + (1-q)p^{20-i}(1-p)^i])^{-1}](https://tex.z-dn.net/?f=P%28C%3D1%7CT%3D1%29%3Dq%28%5Csum_%7Bi%3D15%7D%5E%7B20%7D%5Cbinom%7B20%7D%7Bi%7D%20p%5Ei%281-p%29%5E%7B20-i%7D%29%28%20%5Csum_%7Bi%3D15%7D%5E%7B20%7D%5Cbinom%7B20%7D%7Bi%7D%5Bqp%5Ei%281-p%29%5E%7B20-i%7D%20%2B%20%281-q%29p%5E%7B20-i%7D%281-p%29%5Ei%5D%29%5E%7B-1%7D)