<u>Finding x:</u>
We know that the diagonals of a rhombus bisect its angles
So, since US is a diagonal of the given rhombus:
∠RUS = ∠TUS
10x - 23 = 3x + 19 [replacing the given values of the angles]
7x - 23 = 19 [subtracting 3x from both sides]
7x = 42 [adding 23 on both sides]
x = 6 [dividing both sides by 7]
<u>Finding ∠RUT:</u>
We can see that:
∠RUT = ∠RUS + ∠TUS
<em>Since we are given the values of ∠RUS and ∠TUS:</em>
∠RUT = (10x - 23) + (3x + 19)
∠RUT = 13x - 4
<em>We know that x = 6:</em>
∠RUT = 13(6)- 4
∠RUT = 74°
Usando el teorema de altura El teorema de altura relaciona la altura (h) de un triángulo rectángulo (ver figura) y los catetos de dos triángulos que son semejantes al anterior ABC, al trazar la altura (h) sobre la hipotenusa. De manera que e<span>n todo </span>triángulo rectángulo, la altura (h<span>) relativa a la </span>hipotenusa<span> es la </span>media geométrica<span> de las dos proyecciones de los </span>catetos<span> sobre la </span>hipotenusa<span> (</span>n<span> y </span>m<span>). Es decir, se cumple que:
</span>

Dado que el problema establece <span>construir un segmento cuya longitud sea media proporcional entre dos segmentos de 4 y 9 cm, entonces, digamos que n = 4cm y m = 9cm tenmos que:
</span>

De donde:
¿Cómo se podria construir si los segmentos son de a cm y b cm?
Si los segmentos son de a y b cm entonces a y b son parámetros que pueden tomar cualquier valor positivo siempre que se cumpla que:

Answer:
6
1, 50.3
Step-by-step explanation:
the second part for question two could be anywhere from 50.1-50.4
The answer is g you just have to combine the Like terms