The internet and the government education system. Case closed
Answer:
The simplest form is tan(4x)
Step-by-step explanation:
* Lets revise the identity of the compound angles
- 
- 
* Lets solve the problem
- Let 9x = 5x + 4x
∴ tan(9x) = tan(5x + 4x)
- Use the rule of the compound angle
∵
⇒ (1)
∵
⇒ (2)
∵ tan(9x) = equation (2)
- Substitute (2) in (1)
∴ 
- Multiply up and down by (1 - tan(5x)tan(4x))
∴ ![\frac{tan(5x)+tan(4x)-tan(5x)[1-tan(5x)tan(4x)]}{1-tan(5x)tan(4x)+tan(5x)[tan(5x)+tan(4x)]}](https://tex.z-dn.net/?f=%5Cfrac%7Btan%285x%29%2Btan%284x%29-tan%285x%29%5B1-tan%285x%29tan%284x%29%5D%7D%7B1-tan%285x%29tan%284x%29%2Btan%285x%29%5Btan%285x%29%2Btan%284x%29%5D%7D)
- Simplify up and down
∴ 
∴ ![\frac{tan(4x)+tan^{2}(5x)tan(4x)}{[1+tan^{2}(5x)]}](https://tex.z-dn.net/?f=%5Cfrac%7Btan%284x%29%2Btan%5E%7B2%7D%285x%29tan%284x%29%7D%7B%5B1%2Btan%5E%7B2%7D%285x%29%5D%7D)
- Take tan(4x) as a common factor up
∴ ![\frac{tan(4x)[1+tan^{2}(5x)]}{[1+tan^{2}(5x)]}](https://tex.z-dn.net/?f=%5Cfrac%7Btan%284x%29%5B1%2Btan%5E%7B2%7D%285x%29%5D%7D%7B%5B1%2Btan%5E%7B2%7D%285x%29%5D%7D)
- Cancel [1 + tan²(5x)] up and down
∴ The answer is tan(4x)
Step-by-step explanation:
With a fair die, the probability of rolling a 6 is 1/6 or 0.167.
For the baked die, the low end of the confidence interval is 0.215 − 0.057 = 0.158.
Since 0.167 is within the range of the confidence interval, there is not convincing statistical evidence that a baked die will have a higher probability of rolling a 6 than a fair die.
Answer:
The original price was $288.00.
Step-by-step explanation:
First, identify your rate and your base. Your rate is 20% and your base is $240. Next, take 20% and convert it to a decimal, making .20. Third, multiply the base by the new rate, $240 x .20, but don't line up the decimals. This will give you $48.00 (your number will usually get smaller if you're working with decimals). Finally, add $48.00 to $240.00. This will give you $288.00.
5.5.ooooooooooooooooooooooooooooo1111111111111111111111111111111111111111111111111111111111112222222222222222222222222222222222222222222333333333333333333333333333333333333333333344444444444444444444444444444444444444444444445555555555555555555555555555555555555555556666666666666666666666666666666666666777777777777777777777777777777777777788888888888888888889999999999999999999999999999999999999999999999999999999999999999999999999999999999