Answer:
-2383.83870968
Step-by-step explanation:
I hope this is right...
Answer: The maximum revenue is $7482 . To get a maximum yield , The number of trees per acre needed is 43.
Step-by-step explanation:
Solution:
Let x represent the extra tree
So for an additional tree the yield of each tree will decrease by 4 bushels.
(80 +x)(26-4x) by expanding
2080 - 320x +26x -4x^2
Using x= -b/2a
X= 294/ -8
X= - 36.75
So apparently he currently has far too many trees per acre. To get the maximum yield , she needs to reduce the number of trees per acre by 36.75
So the number of trees per acre for maximum yield is
80-36.75
=43.25
Approximately x=43
So by reducing he get extra bushel in the tune of 174.
Total revenue= 174 ×43× 1$
=$7482
MCE = 360 - (150 + 70 + 50)
mCE = 360 - 270
mCE = 90
<CDE = 1/2(mBE + mCE)
<CDE = 1/2(150 + 90)
<CDE = 1/2(240)
<CDE = 120
answer
<CDE = 120°
The position function of a particle is given by:

The velocity function is the derivative of the position:

The particle will be at rest when the velocity is 0, thus we solve the equation:

The coefficients of this equation are: a = 2, b = -9, c = -18
Solve by using the formula:
![t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D)
Substituting:
![\begin{gathered} t=\frac{9\pm\sqrt[]{81-4(2)(-18)}}{2(2)} \\ t=\frac{9\pm\sqrt[]{81+144}}{4} \\ t=\frac{9\pm\sqrt[]{225}}{4} \\ t=\frac{9\pm15}{4} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20t%3D%5Cfrac%7B9%5Cpm%5Csqrt%5B%5D%7B81-4%282%29%28-18%29%7D%7D%7B2%282%29%7D%20%5C%5C%20t%3D%5Cfrac%7B9%5Cpm%5Csqrt%5B%5D%7B81%2B144%7D%7D%7B4%7D%20%5C%5C%20t%3D%5Cfrac%7B9%5Cpm%5Csqrt%5B%5D%7B225%7D%7D%7B4%7D%20%5C%5C%20t%3D%5Cfrac%7B9%5Cpm15%7D%7B4%7D%20%5Cend%7Bgathered%7D)
We have two possible answers:

We only accept the positive answer because the time cannot be negative.
Now calculate the position for t = 6: