(-5, 2)(-9,9)
D = √( (x2 - x1)^2 + (y2 - y1)^2 )
D = √( (-9+5)^2 + (9 - 2)^2 )
D =√( (-4)^2 + (7)^2 )
D = √( 16 + 49 )
D = √65
D = 8
The coefficient of (3y² + 9)5 is <u>15</u>.
A polynomial is of the form a₀xⁿ + a₁xⁿ⁻¹ + a₂xⁿ⁻² + ... + aₙ₋₁x + aₙ.
Here, x is the variable, aₙ is the constant term, and a₀, a₁, a₂, ..., and aₙ₋₁, are the coefficients.
a₀ is the leading coefficient.
In the question, we are asked to identify the coefficient of (3y² + 9)5.
First, we expand the given expression:
(3y² + 9)5
= 15y² + 45.
Comparing this to the standard form of a polynomial, a₀xⁿ + a₁xⁿ⁻¹ + a₂xⁿ⁻² + ... + aₙ₋₁x + aₙ, we can say that y is the variable, 15 is the coefficient, and 45 is the constant term.
Thus, the coefficient of (3y² + 9)5 is <u>15</u>.
Learn more about the coefficients of a polynomial at
brainly.com/question/9071229
#SPJ1
Answer:
56.
Step-by-step explanation:
That is the number of permutations of 2 from 8
= 8P2
= 8!/(8-2)!
= 8!/6!
= 8 * 7
= 56.
Domain: {-5, 7}
Range: {-9, 4, 8}