6 + m/4 = 3 (subtract 6 from both sides)
m/4 = -3 (multiply both sides by 4)
m = -12
Can plug in to original equation to check work:
6 - 12/4 = 3
6 - 3 = 3
3 = 3
The answer m = -12 checks out
For this, we use simultaneous equations. Let George's page be g, Charlie's be c and Bill's page be b.
First, <span>George's page contains twice as many type words as Bill's.
Thus, g = 2b.
</span><span>Second, Bill's page contains 50 fewer words than Charlie's page.
Thus, b = c - 50.
</span>If each person can type 60 words per minute, after one minute (i.e. when 60 more words have been typed) <span>the difference between twice the number of words on bills page and the number of words on Charlie's page is 210.
We can express that as 2b - c = 210.
Now we need to find b, since it represents Bill's page.
We can substitute b for (c - 50) since b = c - 50, into the equation 2b - c = 210. This makes it 2(c - 50) - c = 210.
We can expand this to 2c - 100 - c = 210.
We can simplify this to c - 100 = 210.
Add 100 to both sides.
c - 100 + 100 = 210 + 100
Then simplify: c = 210 + 100 = 310.
Now that we know c, we can use the first equation to find b.
b = c - 50 = 310 - 50 = 260.
260 is your answer. I don't know where George comes into it. Maybe it's a red herring!</span>
Answer:
1. sum of term = 465
2. nth term of the AP = 30n - 10
Step-by-step explanation:
1. The sum of all natural number from 1 to 30 can be computed as follows. The first term a = 1 and the common difference d = 1 . Therefore
sum of term = n/2(a + l)
where
a = 1
l = last term = 30
n = number of term
sum of term = 30/2(1 + 30)
sum of term = 15(31)
sum of term = 465
2.The nth term of the sequence can be gotten below. The sequence is 20, 50, 80 ......
The first term which is a is equals to 20. The common difference is 50 - 20 or 80 - 50 = 30. Therefore;
a = 20
d = 30
nth term of an AP = a + (n - 1)d
nth term of an AP = 20 + (n - 1)30
nth term of an AP = 20 + 30n - 30
nth term of the AP = 30n - 10
The nth term formula can be used to find the next term progressively. where n = number of term
The sequence will be 20, 50, 80, 110, 140, 170, 200..............
Ok so in order to do that you need a calculator
Hi,
Answer: 7/27
<u>My work:</u> For this problem is already simplified to its simplest terms.
I Hoped I Helped!