STEP 1: Multiply second equation by -3.
After multiplying we have the following system:
3x+4y−3x+3y=8=−36
STEP 2: add the two equations together to eliminate x from the system.
7y=−28
STEP 3: find y
<u>y=−4</u>
<u></u>
STEP 4: substitute the value for y into the original equation to solve for x.
3x+4(−4)=8
<u>x=8</u>
Answer:
277 848 newspapers.
Step-by-step explanation:
Find out how much newspaper he drops for 4.3 miles.
1/4 = 0.25
4.3 miles ÷ 0.25 = 17.2
= 17
17 x 22.7 = 385.9
(Newspapers be dropped a day)
1 week of dropping newspapers = 385.9 x 3 = 1157.7
1 month of dropping newspapers = 1157.7 x 4 =
4630.8
1 year = 12 months
5 years = 12 x 5 = 60 months.
5 years/60 months of dropping newspapers = 4630.8 x 60 = 277 848
Tommy dropped 277 848 newspapers.
Answer:
Step-by-step explanation:
a.
first number is 1000-1+9=1008
9)1000(1
9
-------
10
9
-----
10
9
----
1
----
last number is 9999
9| 9999
---------
1111 |0
--------
9999=1008+(n-1)9
9999-1008=(n-1)9
n-1=8991/9=999
n=999+1=1000
b.
first digit=1000
last digit=9999-1=9998
2 |9999
---------
|4999|1
9998=1000+(n-1)2
(n-1)2=9998-1000=8998
n-1=4499
n=4499=1=5000
c.not sure
d.
total numbers=9000
9999=1000+(n-1)1
9999-1000=n-1
n=8999+1=9000
numbers divisible by 3=3000
first number=1002
last number=9999
9999=1002+(n-1)3
(n-1)3=9999-1002=8997
n-1=2999
n=2999+1=3000
numbers not divisible by 3=9000-3000=6000
e.
numbers divisible by 5=1800
first number=1000
last number=9995
9995=1000+(n-1)5
(n-1)5=9995-1000=8995
n-1=1799
n=1799+1=1800
numbers divisible by 7=1286
7 | 1000
---------
| 142-6
1000-6+7=1001
7 | 9999
|---------
1428-3
9999-3=9996
first digit=1001
last digit=9996
9996=1001+(n-1)7
(n-1)7=9996-1001=8995
n-1=1285
n=1285+1=1286
numbers divisible by 35=257
first digit=1015
35 ) 1000 ( 28
70
----
300
280
------
20
---
1000-20+35=1015
35)9999(285
70
----
299
280
-----
199
175
----
24
----
last digit=9999-24=9975
9975=1015+(n-1)35
(n-1)35=9975-1015=8960
n-1=8960/35=256
n=257
reqd. numbers=1800+1286-257=3019
Answer:
A. 
B. 
Step-by-step explanation:
Consider the equation

A. This equation has no solutions when the coefficients at x are the same and the free coefficients are not the same.
First, use distributive property:

So, the equation is

This equation has no solutions when

B. The equation has infinitely many solutions when the coefficients at x are the same and the free coefficients are the same too.
So, the equation

has infinitely many solutions when

In other cases, the equation has a unique solution
Answer:
20
Step-by-step explanation: