Answer:
Incorrect.
Step-by-step explanation:
1 toss could not change the frequency by such a large margin 0.47 ---> 0.55.
The number of heads obtained in 30 tosses = 30 * 0.47 = 14.
So if the next toss came up heads the relative frequency of heads would be
15/31 = 0.48.
The solutions fo the inequality are all the points (x, y) that meet these 3 conditions.
- x ≠ 0
- y ≠ 0
- Sign(x) =sign(y)
<h3>
Which points are solutions of the inequality?</h3>
We want to find points of the form (x, y) that are solutions of the inequality:
x*y > 0
Clearly x and y must be different than zero.
So, for example if x = -1, y can be any negative number, for example y= -3
x*y > 0
(-1)*(-3) > 0
3 > 0
This is true.
Now if x = 1, y must be positive. LEt's take y = 103, then:
x*y > 0
1*103 > 0
103 > 0
Then we have 3 conditions:
- x ≠ 0
- y ≠ 0
- Sign(x) =sign(y)
The solutions fo the inequality are all the points (x, y) that meet these 3 conditions.
If you want to learn more about inequalities:
brainly.com/question/25275758
#SPJ1
Step-by-step explanation:
answer is attached as image
( - ∞, 3) ∪ (3, ∞ )
The domain is the set of values of x which make f(x) defined
The denominator of f(x) cannot be zero as this would make f(x) undefined. Equating the denominator to zero and solving gives the value that x cannot be.
solve x - 3 = 0 ⇒ x = 3
domain : (- ∞, 3) ∪ (3, ∞ )
Solve the following system:{12 x = 54 - 6 y | (equation 1)-17 x = -6 y - 62 | (equation 2)
Express the system in standard form:{12 x + 6 y = 54 | (equation 1)-(17 x) + 6 y = -62 | (equation 2)
Swap equation 1 with equation 2:{-(17 x) + 6 y = -62 | (equation 1)12 x + 6 y = 54 | (equation 2)
Add 12/17 × (equation 1) to equation 2:{-(17 x) + 6 y = -62 | (equation 1)0 x+(174 y)/17 = 174/17 | (equation 2)
Multiply equation 2 by 17/174:{-(17 x) + 6 y = -62 | (equation 1)0 x+y = 1 | (equation 2)
Subtract 6 × (equation 2) from equation 1:{-(17 x)+0 y = -68 | (equation 1)0 x+y = 1 | (equation 2)
Divide equation 1 by -17:{x+0 y = 4 | (equation 1)0 x+y = 1 | (equation 2)
Collect results:Answer: {x = 4 {y = 1
Please note the { are supposed to span over both equations but it interfaces doesn't allow it. Please see attachment for clarification.