Invitamos cordialmente a leer el desarrollo del problema para mayor detalle sobre el análisis de la situación y la construcción del diagrama.
<h3>Cómo construir un diagrama a partir de un enunciado</h3>
En esta pregunta debemos elaborar un diagrama de flujo, puesto que el enunciado muestra de manera evidente una clasificación de los viajeros según las ciudades de destino.
Nótese que se trata de un diagrama bastante simple, dado que no existe evidencia de jerarquización entre las ciudades mencionadas.
Tras una lectura cuidadosa del enunciado encontramos que de 25 estudiantes de cuarto grado "C" que decidieron irse de viaje, 10 viajaron a Paracas, 15 viajaron a Arequipa, 7 viajaron a los dos lugares citados y 3 viajaron a Chosica.
A continuación, presentamos el diagrama de flujo asociado a este caso en la imagen adjunta abajo.
Para aprender más sobre diagramas, invitamos cordialmente a ver esta pregunta verificada: brainly.com/question/10092453
What the make no sense but I believe it is 50.24 hope that helps
Answer: which will give you 15x+3y=44 and you cannot do anything else because you don't have any like terms any more so that's your answer.
Step-by-step explanation: the first thing you need to do first is to combine like terms. and if i did a mistake sorry but i hope this helps.
Answer:

Step-by-step explanation:
In order to solve this it is always a good idea to start by drawing a diagram of the situation (See attached picture).
From the diagram we can see that we are dealing with similar triangles. We can use similar triangles to build an equation that relates the length of the shadow with the height of the lamp, so we get:

the height of the lamp can be found by subtracting the
distance the lamp falls in a given time t from the original 30ft the lamp was located at.
So the equation will now lok like this:

So now we can solve the equation for L, we can start by multiplying by the LCD SO WE GET:

next, we can distribute the right side of the equation so we get:

and subtract 6L from both sides so we get:

and factor L, so we get:

and solve for L:

now, we can differentiate this equation by using the chain rule, so we get:

which can be simplified to:

and now we can substitute t for 1s so we get:


Answer:
The critical value for this hypothesis test is 6.571.
Step-by-step explanation:
In this case the professor wants to determine whether the average number of minutes that a student needs to complete a statistics exam has a standard deviation that is less than 5.0 minutes.
Then the variance will be,
The hypothesis to determine whether the population variance is less than 25.0 minutes or not, is:
<em>H</em>₀: The population variance is not less than 25.0 minutes, i.e. <em>σ²</em> = 25.
<em>Hₐ</em>: The population variance is less than 25.0 minutes, i.e. <em>σ²</em> < 25.
The test statistics is:

The decision rule is:
If the calculated value of the test statistic is less than the critical value,
then the null hypothesis will be rejected.
Compute the critical value as follows:

*Use a chi-square table.
Thus, the critical value for this hypothesis test is 6.571.