let's bear in mind that sin(θ) in this case is positive, that happens only in the I and II Quadrants, where the cosine/adjacent are positive and negative respectively.
![\bf sin(\theta )=\cfrac{\stackrel{opposite}{5}}{\stackrel{hypotenuse}{6}}\qquad \impliedby \textit{let's find the \underline{adjacent side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{6^2-5^2}=a\implies \pm\sqrt{36-25}\implies \pm \sqrt{11}=a \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20sin%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B5%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B6%7D%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Badjacent%20side%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Cpm%5Csqrt%7Bc%5E2-b%5E2%7D%3Da%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B6%5E2-5%5E2%7D%3Da%5Cimplies%20%5Cpm%5Csqrt%7B36-25%7D%5Cimplies%20%5Cpm%20%5Csqrt%7B11%7D%3Da%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

X=2.08
To solve you need to first get x by itself. To do that you want to subtract 6 from both sides (get 6 away from x and put on other side) which will leave you with -5.2=-2.5x next isolate x by dividing -2.5 on both sides to then get 2.08=x
Answer:
option 2
Step-by-step explanation:
The problem can be solved using Pythagoras' identity for a right triangle.
The angle between due East and due North is 90°
The solution here involves using the Cosine rule.
let x be the direct distance between house and office, then
x² = 17² + 21² - 2(17)(21)cos90° → option 2
Note that since cos90° = 0 the equation reduces to
x² = 17² + 21² ← Pythagoras' identity
Answer:
−3a+38
Step-by-step explanation:
i simplified the expression
all you have to do is add up all the sides and your answer will be 21 cm