Answer:
b(4) = -14
Step-by-step explanation:
b(n)=4-6(n-1)
let n=4
b(4) = 4 - 6(4-1)
b(4) = 4-6*3
b(4) = 4-18
b(4) = -14
Answer:
(3,4)
Step-by-step explanation: I'm assuming you want to know the final point you end up at. The first part of our coordinate pair is our x value, so we want to reduce our x-value by 4 to go left 4 units, the second part is our y-value, we want to reduce it by 1 to go down 1 unit. So, our final coordinate pair is (7-4,5-1) or (3,4).
Answer:
16
Step-by-step explanation:
Subtracting the given expressions, that is
3b² - 8 - (b(b² + b - 7) ) ← simplify parenthesis
= 3b² - 8 - (b³ + b² - 7b) ← distribute parenthesis by - 1
= 3b² - 8 - b³ - b² + 7b ← collect like terms
= - b³ + 2b² + 7b - 8 ← substitute b = - 3
= - (- 3)³ + 2(- 3)² + 7(- 3) - 8
= - (- 27) + 2(9) - 21 - 8
= 27 + 18 - 21 - 8
= 16
First you need to find the slope, which is (y2-y1)/(x2-x1)
Plug the points in as (1-4)/(-1-1) -> -3/-2
The slope is 3/2, or 1.5
Point slope form is y-y1 = m(x-x1)
Plug in the slope (m) and the first point
y-4 = 1.5(x-1) <-- That's point slope form
To get standard form (ax+by=c), you can use point slope form
y - 4 = 1.5(x - 1)
y - 4 = 1.5x - 1.5
y = 1.5x + 2.5
-1.5x + y = 2.5 <-- Standard Form