1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leva [86]
3 years ago
13

Calculus 2. Please help

Mathematics
1 answer:
Anarel [89]3 years ago
7 0

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

You might be interested in
Find the unit rate.<br> 20 miles in 2 minutes = ___<br> miles per minute
Damm [24]

Answer:

10 mpm

Step-by-step explanation:

20 / 2 = 10

3 0
3 years ago
Read 2 more answers
M is directly proportional to r^2. When r=2 m=14. Work out the value of m when r=12
7nadin3 [17]

Answer:

PLEASE HELLP ME FOR MATHS

Step-by-step explanation:

7 0
3 years ago
What is the circumference of a circle with a radius of 5.4 inches? Enter your answer as a decimal. Use 3.14 for pi. Round your a
SVEN [57.7K]
Circumference = 2 × π × r
circumference = 2 × 3.14 × 5.4
circumference = 33.912
circumference = 33.9 in²
6 0
3 years ago
Jamal used 1/3 yard of ribbon to tie a package and 1/6 yard of ribbon to tie a bow. How many yards of ribbon did Jamal use?
sp2606 [1]
1/2 a yard of ribbon.
5 0
3 years ago
Read 2 more answers
24s2+13s–2=0 solve for s
trasher [3.6K]

Answer:

This is your answer

6 0
3 years ago
Read 2 more answers
Other questions:
  • Addison earn $25 Mowing her neighbors lawn. Then she loaned her friend $18, and got $50 from her grandmother for her birthday sh
    6·1 answer
  • If h(x)=4x - 3 and g(x) = x^2 -3x find g(-3)
    8·2 answers
  • Correct answer gets brainliest and full ratings.
    13·2 answers
  • ANOTHER QUESTION WHAT IS THIS 7x+9=5x+15
    10·2 answers
  • What is the best estimate of the sum of the fractions? StartFraction 31 over 4 EndFraction + StartFraction 17 over 3 EndFraction
    7·2 answers
  • We have the number of figures 45, 36, and 18. It will be arranged into rows. Each row will have the same number of figures, and
    9·1 answer
  • How many 12 ounces can go into a 10 gallon jug?
    14·1 answer
  • Match the opposites 0 -0.875 5 10.4 8,003 -28 -5 28 -10.4 0.875 -8,003 0 -5 28 -10.4 0.875 -8,003 0
    7·1 answer
  • HELP! I NEED AN ANSWER. IF YOUR ANSWER WAS CORRECT I WILL GIVE YOU BRAINLIEST
    13·1 answer
  • Is the equation Y=.125x a proportional relationship <br><br> Yes or no
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!