1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leva [86]
3 years ago
13

Calculus 2. Please help

Mathematics
1 answer:
Anarel [89]3 years ago
7 0

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

You might be interested in
Pls help a brother out!
Leviafan [203]

Answer:

12 maybe the ANSWER.

hope it helps you

3 0
4 years ago
Read 2 more answers
For the function g defined above, a is a constant and g(4) = 8 what is the value of g(-4)
kondaur [170]

Answer:

-8

Step-by-step explanation:

g(4)=8

8÷4=2

g=2

g(-4)=2(-4)

=(-8)

holp it can help you.

7 0
3 years ago
Yesterday, Jack drove 35 1/2 miles used 1 1/4 gallons of gasoline. What is the unit rate for miles per gallon?
insens350 [35]

Answer:

28.4 miles/gallon

Step-by-step explanation:

to find the answer, you need to find the constant by dividing the miles drove by the amount of gasoline (or the other way around in terms of wording if it is not correct grammar) So you need to do 35.5/1.25 .  FYI I converted the fraction to decimal. The answer is 28.4 miles/gallon.

Hope this helped!! :)

7 0
3 years ago
In triangle DEF = 18 and m angle F = 45. Find the length of a leg rounded to the to the nearest tenth.
Bezzdna [24]

Hello there!

If DEF = 18, we then use the sin method, or the law of sin.

18 divide by sin90 would be F = sin45 .

We therefore end up with 12.72 but rounded would be 12.7 as 2 is lower than 5, so, it just rounds back down to 7.

Your answer: 12.7

6 0
3 years ago
Which expression is equivalent to6X2/3?<br> a. 12X1/2<br> b.12X1/3<br> c.6X1?3<br> d.3X2/3
Paul [167]
The answer to 6x2/3 is B. 12x1/3 your welcome : )
5 0
4 years ago
Other questions:
  • Sean runs 3 1/2 miles in 28 minutes how long did it take him to run 1 mile
    15·1 answer
  • Find the y-intercept of the line represented by 6x-7y=12
    12·2 answers
  • an elevator weighing 6,000 newton move up a distance of 10 meters in 30 seconds.what was the power of the elevators motor in wat
    8·1 answer
  • A movie theater make a profit Of $15 on adult ticket and $7.50 for children ticket.Write an inequality in slope intercept from t
    6·2 answers
  • An official authorization or approval from a professional organization of society that indicates that a person has met certain p
    7·1 answer
  • A vegetable garden measures 20m x 30m. He wants to double the area by adding a strip of ground around the outside. How wide shou
    9·1 answer
  • TJ-Maxx offered a 40% discount off the original
    6·1 answer
  • Erica is entering a bicycle race for charity. Her mother will donate $0.40 for every 0.25 mile she bikes. If Erica bikes 18 mile
    11·1 answer
  • a family is consuming 2 liters of water each day what expression can the family use to determine the amount of water left. in th
    15·1 answer
  • What is the leading coefficient of 8 -5x+x^3-2x^4
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!