The slope, or gradient, of the line is 6/-3 which is -2. The gradient is -2.
-25 is an integer and a rational number.
<h3>What is number system?</h3>
- A system of writing numbers is known as a number system.
- It is the mathematical notation for consistently employing digits or other symbols to represent the numbers in a particular set.
- It represents the arithmetic and algebraic structure of the numbers and gives each number a distinct representation.
Now,
- Natural numbers are positive integers with a range of 1 to infinity; nevertheless, they do not include zero. -25 wouldn't be a natural number because it is a negative number.
- A group of numbers known as a whole number consists of all positive integers and 0. This wouldn't be a whole number because -25 isn't a positive number.
- Any real number that cannot be represented as the quotient of two integers is said to be irrational. Square roots of irrational numbers are also frequently seen. -25, however, is not a square root.
- Any number that can be expressed as a ratio, or a fraction, of two integers, is referred to be a rational number. Fractions, decimals, negative decimals, and other rational numbers are very prevalent. Since -25 can be represented as a ratio of two numbers. it is a rational number.
- A whole number that can be either positive, negative, or zero is known as an integer. As -25 is negative and a whole number( when positive), it is an integer.
Hence, -25 is an integer and a rational number.
To learn more about number system, refer to the link: brainly.com/question/13162939
#SPJ4
<span>164+56-[3+4+1]=
= 164 + 56 - 8
= 212
Have a nice days...........</span>
![\begin{cases} 4x+3y=-8\\\\ -8x-6y=16 \end{cases}~\hspace{10em} \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%204x%2B3y%3D-8%5C%5C%5C%5C%20-8x-6y%3D16%20%5Cend%7Bcases%7D~%5Chspace%7B10em%7D%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![4x+3y=-8\implies 3y=-4x-8\implies y=\cfrac{-4x-8}{3}\implies y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{4}{3}} x-\cfrac{8}{3} \\\\[-0.35em] ~\dotfill\\\\ -8x-6y=16\implies -6y=8x+16\implies y=\cfrac{8x+16}{-6} \\\\\\ y=\cfrac{8}{-6}x+\cfrac{16}{-6}\implies y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{4}{3}} x-\cfrac{8}{3}](https://tex.z-dn.net/?f=4x%2B3y%3D-8%5Cimplies%203y%3D-4x-8%5Cimplies%20y%3D%5Ccfrac%7B-4x-8%7D%7B3%7D%5Cimplies%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-%5Ccfrac%7B4%7D%7B3%7D%7D%20x-%5Ccfrac%7B8%7D%7B3%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20-8x-6y%3D16%5Cimplies%20-6y%3D8x%2B16%5Cimplies%20y%3D%5Ccfrac%7B8x%2B16%7D%7B-6%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Ccfrac%7B8%7D%7B-6%7Dx%2B%5Ccfrac%7B16%7D%7B-6%7D%5Cimplies%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-%5Ccfrac%7B4%7D%7B3%7D%7D%20x-%5Ccfrac%7B8%7D%7B3%7D)
one simple way to tell if both equations do ever meet or have a solution is by checking their slope, notice in this case the slopes are the same for both, meaning the lines are parallel lines, however, notice both equations are really the same, namely the 2nd equation is really the 1st one in disguise.
since both equations are equal, their graph will be of one line pancaked on top of the other, and the solutions is where they meet, hell, they meet everywhere since one is on top of the other, so infinitely many solutions.