Answer
a. 28˚
b. 76˚
c. 104˚
d. 56˚
Step-by-step explanation
Given,
∠BCE=28° ∠ACD=31° & line AB=AC .
According To the Question,
- a. the angle between a chord and a tangent through one of the end points of the chord is equal to the angle in the alternate segment.(Alternate Segment Theorem) Thus, ∠BAC=28°
- b. We Know The Sum Of All Angles in a triangle is 180˚, 180°-∠CAB(28°)=152° and ΔABC is an isosceles triangle, So 152°/2=76˚
thus , ∠ABC=76° .
- c. We know the Sum of all angles in a triangle is 180° and opposite angles in a cyclic quadrilateral(ABCD) add up to 180˚,
Thus, ∠ACD + ∠ACB = 31° + 76° ⇔ 107°
Now, ∠DCB + ∠DAB = 180°(Cyclic Quadrilateral opposite angle)
∠DAB = 180° - 107° ⇔ 73°
& We Know, ∠DAC+∠CAB=∠DAB ⇔ ∠DAC = 73° - 28° ⇔ 45°
Now, In Triangle ADC Sum of angles in a triangle is 180°
∠ADC = 180° - (31° + 45°) ⇔ 104˚
- d. ∠COB = 28°×2 ⇔ 56˚ , because With the Same Arc(CB) The Angle at circumference are half of the angle at the centre
For Diagram, Please Find in Attachment
Why not? Because every math system you've ever worked with has obeyed these properties! You have never dealt with a system where a×b did not in fact equal b×a, for instance, or where (a×b)×c did not equal a×(b×c). Which is why the properties probably seem somewhat pointless to you. Don't worry about their "relevance" for now; just make sure you can keep the properties straight so you can pass the next test. The lesson below explains how I kept track of the properties.
Answer:
0.5 meters per second
Step-by-step explanation:
Answer:
hmm.. very blurry repost please
Step-by-step explanation:
Answer:
$73.25
Step-by-step explanation:
35 + 2.55(15) = 38.25 + 35 = 73.25