1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastovalidia [21]
3 years ago
5

" If $6000 is borrowed at 7.5% simple interest for 2 yr, then the amount of interest is "

Mathematics
1 answer:
Mnenie [13.5K]3 years ago
3 0

Answer:

u

Step-by-step explanation:

You might be interested in
Can someone please help me?
Nonamiya [84]

you have to read the bottom link for the answer key

3 0
3 years ago
There are some monkeys in the zoo. 60% are young monkeys and the remaining are baby and old monkeys. The ratio of baby monkeys t
USPshnik [31]

Answer:

There are 60 monkeys in the Zoo

Step-by-step explanation:

In this question, we are asked to calculate the number of monkeys in a Zoo given some information to use.

Let’s have the total number of monkeys be m.

60% are going monkeys. This means number of young monkeys is 0.6m.

The number of baby and old monkeys is obviously 0.4m.

Ratio of baby to old monkeys is 3:1. This means if we splitter 0.4m into 4, number of baby monkeys is 0.3m while number of old monkeys is 0.1m

Now, subtracting the number of baby monkeys from young monkeys give a total of 18 monkeys.

Let’s project this mathematically;

This means ;

0.6m - 0.3m = 18

0.3m = 18

m = 18/0.3

m = 60

There are 60 monkeys in the zoo

3 0
3 years ago
Read 2 more answers
The equation for the circle below is x2 + y2 = 100. what is the length of the circle's radius?
stealth61 [152]
X²+y² =(Radius)²

x²+y² =10². So the radius is 10

4 0
3 years ago
Read 2 more answers
The area is about twenty six thousand six hundred six and sixty three hundredths. Write in a standerd form
jek_recluse [69]
The standard form is 26,663 hope this answers your question
5 0
3 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
Other questions:
  • Pls help me pls I need help
    7·1 answer
  • each side of triangle 6cm if jade want to glue pink ribbon around the premeter of triangle how many ribbon will she need​
    14·2 answers
  • Tyler fills up his tank with 12 gallons of gas. If one trip, on average,takes 1/2 gallon of gas, how many trips will the Tyler b
    8·1 answer
  • How do I do this? Please help me
    7·1 answer
  • Leigh plans to estimate the area of the figure on the grid by identifying the full and partial squares that make up the figure.
    14·1 answer
  • Middle school math please help, thank you!
    8·2 answers
  • On a trip to Spain,Kelly brought a piece of jewelry that cost $50.75.She paid for it with her credit card, which charges a forei
    7·1 answer
  • Expand and simplify (x − 3)(2x + 1)(3x - 2)
    15·2 answers
  • Can someone tell me the answer to this please I got this wrong on my first attempt .-.
    12·2 answers
  • How can I draw this problem?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!