you have to read the bottom link for the answer key
Answer:
There are 60 monkeys in the Zoo
Step-by-step explanation:
In this question, we are asked to calculate the number of monkeys in a Zoo given some information to use.
Let’s have the total number of monkeys be m.
60% are going monkeys. This means number of young monkeys is 0.6m.
The number of baby and old monkeys is obviously 0.4m.
Ratio of baby to old monkeys is 3:1. This means if we splitter 0.4m into 4, number of baby monkeys is 0.3m while number of old monkeys is 0.1m
Now, subtracting the number of baby monkeys from young monkeys give a total of 18 monkeys.
Let’s project this mathematically;
This means ;
0.6m - 0.3m = 18
0.3m = 18
m = 18/0.3
m = 60
There are 60 monkeys in the zoo
X²+y² =(Radius)²
x²+y² =10². So the radius is 10
The standard form is 26,663 hope this answers your question
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Functions
- Function Notation
<u>Calculus</u>
Derivatives
Derivative Notation
Derivative Rule [Quotient Rule]: ![\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
MacLaurin/Taylor Polynomials
- Approximating Transcendental and Elementary functions
- MacLaurin Polynomial:

- Taylor Polynomial:

Step-by-step explanation:
*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.
<u />
<u>Step 1: Define</u>
<em>Identify</em>
f(x) = ln(1 - x)
Center: x = 0
<em>n</em> = 3
<u>Step 2: Differentiate</u>
- [Function] 1st Derivative:

- [Function] 2nd Derivative:

- [Function] 3rd Derivative:

<u>Step 3: Evaluate Functions</u>
- Substitute in center <em>x</em> [Function]:

- Simplify:

- Substitute in center <em>x</em> [1st Derivative]:

- Simplify:

- Substitute in center <em>x</em> [2nd Derivative]:

- Simplify:

- Substitute in center <em>x</em> [3rd Derivative]:

- Simplify:

<u>Step 4: Write Taylor Polynomial</u>
- Substitute in derivative function values [MacLaurin Polynomial]:

- Simplify:

Topic: AP Calculus BC (Calculus I/II)
Unit: Taylor Polynomials and Approximations
Book: College Calculus 10e