Answer:
(E) 0.71
Step-by-step explanation:
Let's call A the event that a student has GPA of 3.5 or better, A' the event that a student has GPA lower than 3.5, B the event that a student is enrolled in at least one AP class and B' the event that a student is not taking any AP class.
So, the probability that the student has a GPA lower than 3.5 and is not taking any AP classes is calculated as:
P(A'∩B') = 1 - P(A∪B)
it means that the students that have a GPA lower than 3.5 and are not taking any AP classes are the complement of the students that have a GPA of 3.5 of better or are enrolled in at least one AP class.
Therefore, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
Where the probability P(A) that a student has GPA of 3.5 or better is 0.25, the probability P(B) that a student is enrolled in at least one AP class is 0.16 and the probability P(A∩B) that a student has a GPA of 3.5 or better and is enrolled in at least one AP class is 0.12
So, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∪B) = 0.25 + 0.16 - 0.12
P(A∪B) = 0.29
Finally, P(A'∩B') is equal to:
P(A'∩B') = 1 - P(A∪B)
P(A'∩B') = 1 - 0.29
P(A'∩B') = 0.71
Which one the first three???
Let's assume two variables x and y which represent the local and international calls respectively.
x + y = 852 = total number of minutes which were consumed by the company (equation 1)
0.06*x+ 0.15 y =69.84 = total price which was charged for the phone calls (Equation 2)
from equation 1:-
x=852 -y (sub in equation 2)
0.06 (852 - y) + 0.15 y =69.84
51.12 -0.06 y +0.15 y =69.84 (subtracting both sides by 51.12)
0.09 y =18.74
y= 208 minutes = international minutes (sub in 1)
208+x=852 (By subtracting both sides by 208)
x = 852-208 = 644 minutes = local minutes
Answer:
M=5
Step-by-step explanation:
2 ( 2m ) + 4 ( 4m + 2 ) = 108
step 1. do distributive property
4m + 16m + 8 = 108
step 2. add 4m and 16m and subtract 8 from 108
20m = 100
step 3. divide 100 by 20
m = 5