1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
In-s [12.5K]
3 years ago
7

What is the difference?

Mathematics
1 answer:
TEA [102]3 years ago
7 0

Answer:

I WAS WRONG PICK D

Step-by-step explanation:

I'm an idiot

You might be interested in
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Find the midpoint of points A (5,-6) and B(2,0) graphically​
netineya [11]
I think its (3.5, -3)
8 0
2 years ago
Plz help ASAP! Algebra 1 question. I will mark brainiest and give 50 points.
Musya8 [376]

Answer:

it is 20x - 11 = 5x + 11

Step-by-step explanation:

hope this help :)

8 0
2 years ago
Read 2 more answers
Prove that<br> cos^4∆ - sin^4∆ = 2cos^2∆ - 1
GarryVolchara [31]

\cos^{4} x-\sin^{4} x\\\\=(\cos^{2} x+\sin^{2} x)(\cos^{2} x-\sin^{2} x)\\\\=\cos^{2} x-\sin^{2} x\\\\=\cos^{2} x-(1-\cos^{2} x)\\\\=2\cos^{2} x-1

3 0
1 year ago
If you cannot see my apologies, but you can zoom in!
nataly862011 [7]

Answer:

C

Step-by-step explanation:

The sum of the angles is 90

2x + x = 90

3x = 90

x = 30

the angle ABC is 2x, so it means that is the double of x, so it is 60 degrees

6 0
3 years ago
Other questions:
  • What is the scientific notation for 0.0138
    14·1 answer
  • What is the y intercept of f(x)=2x^2+8x+6
    14·1 answer
  • Please help!<br> A- answer as a percent rounded to nearest tenth<br> B- answer as a fraction
    13·1 answer
  • A man that is 6 feet tall is standing so that the tip of his shadow is 20 feet from a light pole. His shadow is 8 feet long. Wha
    7·1 answer
  • Find the product. Simplify. 1/10 x 3/4
    5·2 answers
  • Please help ill give brainliest
    13·2 answers
  • PLEASE HELPPP!!!
    8·1 answer
  • Need help pls and th x s​
    11·1 answer
  • How much farther can the vehicle you chose in part (a) travel than the other vehicle on 8 gallons of gasoline
    15·1 answer
  • Find the value of x for the right triangle.​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!