Answer:
The answer to this is: 132
Step-by-step explanation:
Answer:
14 in^3.
Step-by-step explanation:
The volume = volume of the bottom prism + volume of the top pyramid
= area of base * height of the prism + 1/3 * area of base * height of the pyramid
= 2 * 1.5 * 4 + 1/3 * (2*1.5) * 2
= 3*4 + 1/3 * 6
= 14 in^3.
Multiply the equation:

The solution set is the same, because multiplying both sides of an equation by a non-zero number doesn't change the solution set. In fact, if you rewrite the equation as

Multiplying this by 3 (or whatever number, for all it matters) gives

Now, a product is zero if and only if at least one of the factor is zero. So, either
or 
Since the first is clearly impossible, the second one must be true, which is the original equation.
Using the hypergeometric distribution, it is found that there is a 0.0273 = 2.73% probability that the third defective bulb is the fifth bulb tested.
In this problem, the bulbs are chosen without replacement, hence the <em>hypergeometric distribution</em> is used to solve this question.
<h3>What is the hypergeometric distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- N is the size of the population.
- n is the size of the sample.
- k is the total number of desired outcomes.
In this problem:
- There are 12 bulbs, hence N = 12.
- 3 are defective, hence k = 3.
The third defective bulb is the fifth bulb if:
- Two of the first 4 bulbs are defective, which is P(X = 2) when n = 4.
- The fifth is defective, with probability of 1/8, as of the eight remaining bulbs, one will be defective.
Hence:


0.2182 x 1/8 = 0.0273.
0.0273 = 2.73% probability that the third defective bulb is the fifth bulb tested.
More can be learned about the hypergeometric distribution at brainly.com/question/24826394