Answer:
I would say that the answer is 4/20
The four inequalities that can be used to find the solution of 3 ≤ |x + 2| ≤ 6 is x + 2 ≤ 6, x + 2 ≥ -6, x + 2 ≥ 3 and x + 2 ≤ -3
<h3>What is an
equation?</h3>
An equation is an expression that shows the relationship between two or more variables and numbers.
Given the inequality:
3 ≤ |x + 2| ≤ 6
Hence:
x + 2 ≤ 6, -(x + 2) ≤ 6, 3 ≤ x + 2 and 3 ≤ -(x + 2)
This gives:
x + 2 ≤ 6, x + 2 ≥ -6, x + 2 ≥ 3 and x + 2 ≤ -3
The four inequalities that can be used to find the solution of 3 ≤ |x + 2| ≤ 6 is x + 2 ≤ 6, x + 2 ≥ -6, x + 2 ≥ 3 and x + 2 ≤ -3
Find out more on equation at: brainly.com/question/2972832
#SPJ1
Answer:
C
Step-by-step explanation:
Both of the y= make upward parabolas
It is also going into the positive direction so it is
As points, x-intercepts take the form

, so to find the intercepts we can set

and solve for

.

From the first equation alone, we already know that

is a solution, which means one intercept is

.
The second equation gives

so that the second intercept occurs at

.
So if

and

, we have

, giving C as the answer.