We are given the functions:
<span>S (p) = 40 + 0.008 p^3 --->
1</span>
<span>D (p) = 200 – 0.16 p^2 --->
2</span>
T o find for the price in which the price of supply equals
demand, all we have to do is to equate the two equations, equation 1 and 2, and
calculate for the value of p, therefore:
S (p) = D (p)
40 + 0.008 p^3 = 200 – 0.16 p^2
0.008 p^3 + 0.16 p^2 = 160
p^3 + 20 p^2 = 20,000
p^3 + 20 p^2 – 20,000 = 0
Calculating for the roots using the calculator gives us:
p = 21.86, -20.93±21.84i
Since price cannot be imaginary therefore:
p = 21.86
Strawberries are my favorite fruit
Answer:
The equations describing the area which each tower covers are given as
Tower A : 
Tower B : 
Tower C : 
Step-by-step solution:
Cell phone radio towers broadcast a cell phone signal in circular pattern
Tower A at Adele Acres have position co-ordinates as (0,0) and a coverage radius of 4 ml. So, the area which it covers is given by the equation,
-------------------------------(1)
Tower B at Brown Lake have position co-ordinates as (5,4) and a coverage radius of 3 ml. So, the area which it covers is given by the equation,
-------------------------------(2)
Tower C at Cady City have position co-ordinates as (4,-4) and a coverage radius of 5 ml. So, the area which it covers is given by the equation,
-------------------------------(2)
According with the definition of translation, we conclude that the equations of graphs M and N are m(x) = f(x - 5) and n(x) = f(x) - 2, respectively.
<h3>How to apply translations on a given function</h3>
<em>Rigid</em> transformations are transformation such that the <em>Euclidean</em> distance of every point of a function is conserved. Translations are a kind of <em>rigid</em> transformations and there are two basic forms of translations:
Horizontal translation
g(x) = f(x - k), k ∈
(1)
Where the translation goes <em>rightwards</em> for k > 0.
Vertical translation
g(x) = f(x) + k, k ∈
(2)
Where the translation goes <em>upwards</em> for k > 0.
According with the definition of translation, we conclude that the equations of graphs M and N are m(x) = f(x - 5) and n(x) = f(x) - 2, respectively.
To learn more on translations: brainly.com/question/17485121
#SPJ1