1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ycow [4]
3 years ago
10

Help its addition and subtraction of Algebraic fractions of different denominator

Mathematics
1 answer:
antoniya [11.8K]3 years ago
6 0

Answer:

49. \ \dfrac{x^2}{x^2 +2 \cdot x - 8}  - \dfrac{x - 4}{x + 4}

The above reaction can be rewritten as follows;

\dfrac{x^2}{x^2 +2 \cdot x - 8} - \dfrac{x - 4}{x + 4}  =\dfrac{x^2}{(x + 4) \cdot (x - 2)}  - \dfrac{x - 4}{x + 4} = \dfrac{x^2 + (x - 2) \cdot (x - 4)}{(x + 4) \cdot (x - 2)}

Which gives;

\dfrac{x^2}{x^2 +2 \cdot x - 8} - \dfrac{x - 4}{x + 4}  = \dfrac{x^2 -(x^2 -6 \cdot x + 8) }{(x + 4) \cdot (x - 2)} = \dfrac{6 \cdot x - 8 }{(x + 4) \cdot (x - 2)}

50. \ \dfrac{x - 3}{x^2 +10 \cdot x + 25}  + \dfrac{x - 3}{x + 5}

\dfrac{x - 3}{x^2 +10 \cdot x + 25}  + \dfrac{x - 3}{x + 5} = \dfrac{x - 3}{(x + 5) \cdot (x + 5)}  + \dfrac{x - 3}{x + 5} = \dfrac{x - 3 + (x - 3) \cdot (x + 5)}{(x + 5) \cdot (x + 5)}

\dfrac{x - 3 + (x - 3) \cdot (x + 5)}{(x + 5) \cdot (x + 5)} =  \dfrac{x - 3 + x^2 + 2\cdot x - 15}{(x + 5) \cdot (x + 5)} = \dfrac{ x^2 + 3 \cdot x - 18}{(x + 5) \cdot (x + 5)}

53. \ \dfrac{5}{a^2 +9 \cdot a + 8}  - \dfrac{3}{a^2 -6 \cdot a - 16}

\dfrac{5}{a^2 +9 \cdot a + 8}  - \dfrac{3}{a^2 -6 \cdot a - 16} = \dfrac{5}{(a + 1) \cdot (a + 8)}  - \dfrac{3}{(a - 8) \cdot (a + 2) }

\dfrac{5}{(a + 1) \cdot (a + 8)}  - \dfrac{3}{(a - 8) \cdot (a + 2) } = \dfrac{5 \cdot (a - 8) \cdot (a + 2) - 3\cdot  (a + 1) \cdot (a + 8)}{(a + 1) \cdot (a + 8) \cdot (a - 8) \cdot (a + 2)}

\dfrac{5 \cdot (a - 8) \cdot (a + 2) - 3\cdot  (a + 1) \cdot (a + 8)}{(a + 1) \cdot (a + 8) \cdot (a - 8) \cdot (a + 2)} = \dfrac{2 \cdot a^2 -57 \cdot a -104}{a^4+3 \cdot a^3-62 \cdot a^2 -192 \cdot a - 1}

\dfrac{5}{a^2 +9 \cdot a + 8}  - \dfrac{3}{a^2 -6 \cdot a - 16} =  \dfrac{2 \cdot a^2 -57 \cdot a -104}{a^4+3 \cdot a^3-62 \cdot a^2 -192 \cdot a - 1}

55. \ \dfrac{2}{x^2 +6 \cdot x + 9}  + \dfrac{3}{x^2 + x  - 6}

\dfrac{2}{x^2 +6 \cdot x + 9}  + \dfrac{3}{x^2 + x  - 6} = \dfrac{2}{(x + 3) \cdot (x + 3)} +  \dfrac{3}{(x+3) \cdot(x - 2)}

\dfrac{2}{(x + 3) \cdot (x + 3)} +  \dfrac{3}{(x+3) \cdot(x - 2)} = \dfrac{2 \cdot(x - 2) + 3\cdot (x + 3)  }{(x + 3) \cdot (x + 3) \cdot(x - 2)}

\dfrac{2 \cdot(x - 2) + 3\cdot (x + 3)  }{(x + 3) \cdot (x + 3) \cdot(x - 2)} = \dfrac{2 \cdot x - 4 + 3\cdot x + 9  }{(x + 3) \cdot (x + 3) \cdot(x - 2)} = \dfrac{5 \cdot x + 5 }{(x + 3) \cdot (x + 3) \cdot(x - 2)}\dfrac{5 \cdot x + 5 }{(x + 3) \cdot (x + 3) \cdot(x - 2)} = \dfrac{5 \cdot x + 5 }{x ^3 + 4 \cdot x^2-3 \cdot x - 18}

57. \ \dfrac{x}{2 \cdot x^2 +7 \cdot x + 3}  - \dfrac{3}{3 \cdot x^2 + 7 \cdot x  - 6}

\dfrac{x}{2 \cdot x^2 +7 \cdot x + 3}  - \dfrac{3}{3 \cdot x^2 + 7 \cdot x  - 6} =\dfrac{x}{(2 \cdot x + 1) \cdot (x + 3)}  - \dfrac{3}{(3\cdot x-2) \cdot (x + 3)}

\dfrac{x}{(2 \cdot x + 1) \cdot (x + 3)}  - \dfrac{3}{(3\cdot x-2) \cdot (x + 3)} = \dfrac{x \cdot (3 \cdot x - 2) - 3 \cdot (2 \cdot x + 1)}{(2 \cdot x + 1) \cdot (x + 3) \cdot (3\cdot x-2)}

\dfrac{x \cdot (3 \cdot x - 2) - 3 \cdot (2 \cdot x + 1)}{(2 \cdot x + 1) \cdot (x + 3) \cdot (3\cdot x-2)} = \dfrac{  3 \cdot x^2 - 8\cdot x - 3 }{(2 \cdot x + 1) \cdot (x + 3) \cdot (3\cdot x-2)}

\dfrac{  3 \cdot x^2 - 8\cdot x - 3 }{(2 \cdot x + 1) \cdot (x + 3) \cdot (3\cdot x-2)} = \dfrac{ (x -3) \cdot (3 \cdot x + 1) }{(2 \cdot x + 1) \cdot (x + 3) \cdot (3\cdot x-2)}

\dfrac{ (x -3) \cdot (3 \cdot x + 1) }{(2 \cdot x + 1) \cdot (x + 3) \cdot (3\cdot x-2)} = \dfrac{3 \cdot x^2 - 8 \cdot x -3 }{6 \cdot x^3+ 17 \cdot x^2 + 5 \cdot x-6}

59. \ \dfrac{x}{4 \cdot x^2 +11 \cdot x + 6}  - \dfrac{2}{8 \cdot x^2 + 2 \cdot x  - 3}

Using a graphing calculator, we have;

\dfrac{x}{4 \cdot x^2 +11 \cdot x + 6}  - \dfrac{2}{8 \cdot x^2 + 2 \cdot x  - 3} = \dfrac{2 \cdot x^2 - 3 \cdot x - 4}{8 \cdot x^3+18 \cdot x^2+x - 6}

61. \ \dfrac{3 \cdot w+ 12}{w^2 + w -12}  - \dfrac{2}{w  - 3}

\dfrac{3 \cdot w+ 12}{w^2 + w -12}  - \dfrac{2}{w  - 3} = \dfrac{3 \cdot (w+ 4)}{(w + 4) \cdot (w - 3)}  - \dfrac{2}{w  - 3} = \dfrac{3 }{ (w - 3)}  - \dfrac{2}{w  - 3}

\dfrac{3 }{ (w - 3)}  - \dfrac{2}{w  - 3} = \dfrac{1 }{ (w - 3)}

61. \ \dfrac{3 \cdot r}{2 \cdot r^2 + 10 \cdot r +12}  + \dfrac{3}{r  - 2}

With the aid of a graphing calculator, we have;

\dfrac{3 \cdot r}{2 \cdot r^2 + 10 \cdot r +12}  + \dfrac{3}{r  - 2} = \dfrac{3 \cdot r}{2 \cdot (r+2) \cdot (r + 3)} + \dfrac{3}{r - 2}

\dfrac{3 \cdot r}{2 \cdot (r+2) \cdot (r + 3)} + \dfrac{3}{r - 2} = \dfrac{3 \cdot r \cdot (r - 2) + 3 \cdot 2 \cdot (r+2) \cdot (r + 3)}{2 \cdot (r+2) \cdot (r + 3)\cdot (r - 2) }

\dfrac{3 \cdot r \cdot (r - 2) + 3 \cdot 2 \cdot (r+2) \cdot (r + 3)}{2 \cdot (r+2) \cdot (r + 3)\cdot (r - 2) } = \dfrac{9 \cdot r^2 + 24 \cdot r + 36}{2 \cdot r^3+6\cdot r^2 - 8 \cdot r - 24}

Step-by-step explanation:

You might be interested in
How many solutions 9x +2y =9 -3x + y=2
Tju [1.3M]

Answer:

4

Step-by-step explanatio

6 0
3 years ago
if f(x) = 4 – x2 and g(x) = 6x, which expression is equivalent to (g – f)(3)? a: 6 – 3 – (4 3)2 b: 6 – 3 – (4 – 32) c: 6(3) – 4
jolli1 [7]
F(x) = 4 - x^2
g(x) = 6x
(g - f)(x) = 6x - (4 - x^2)
(g - f)(3) = 6(3) - (4 - 3^2) = 6(3) - 4 + 3^2
6 0
3 years ago
Read 2 more answers
Can someone figure this out for me?
Digiron [165]

Answer:

44°

Step-by-step explanation:

cos B = 0.7193  =  44°

7 0
3 years ago
Please help I will report if wrong... Brainlyest for the first right answer
Nataliya [291]

Answer:

first three expressions are polynomials and last three are not.

Step-by-step explanation:

last three expression has negative powers of X and  some powers of Xs are not integers.

6 0
2 years ago
NEED HELP
Naya [18.7K]
A.38/2 
Dividing helps a lot in these situations.
Hope I helped!
3 0
3 years ago
Other questions:
  • What measurement is equal to 6 kilograms
    7·1 answer
  • If x represents Harry's age now, then which of the following equations could be used to solve the problem?
    10·1 answer
  • What number is 90.9% of 25.04?
    14·1 answer
  • How do you solve g= y-c+x for x
    14·2 answers
  • What is the answer to 2z+12=30
    6·2 answers
  • Can someone help me
    13·1 answer
  • Show that x²/√x²+4 is continuous at x=2​
    14·1 answer
  • Kim has four pieces of ribbon that are
    10·2 answers
  • <img src="https://tex.z-dn.net/?f=%20%20%5Cdisplaystyle%20%5Cint%20%5Climits_%7B0%7D%5E%7B%20%5Cfrac%7B%20%5Cpi%7D%7B2%7D%20%7D%
    13·1 answer
  • Suppose a parabola has a vertex (6, -6) and also passes through the point (8, 6). Write the equation of the parabola in vertex f
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!