The answers B <span>2.6875 x 105 i took the test</span>
Answer:
<u>∗ = 0.4x³</u>
Step-by-step explanation:
(15y + ∗)² = 225y²+12x³y+0.16x⁶
<u>Note:</u>
225y² = 15y * 15y = (15y)²
12x³y = 2 * 15y * 0.4x³
0.16x⁶ = 0.4x³ * 0.4x³ = (0.4x³)²
So, by factoring the right hand side:
225y²+12x³y+0.16x⁶ = (15y + 0.4x³)²
By comparing the left hand side with (15y + 0.4x³)²
<u>So, ∗ should be replaced with the monomial 0.4x³</u>
7x+5y=-24 (1)
4x+y=42 (2)
multiply equation (2) by 5 to get
20x+5y=210 (3)
then calculate (3)-(2) which gives you
13x=234 hence x=18
then substitute for x in either equation to get y=-30
Answer:
Step-by-step explanation:

<h2 /><h2>
<u>Consider</u></h2>

<h2>
<u>W</u><u>e</u><u> </u><u>K</u><u>n</u><u>o</u><u>w</u><u>,</u></h2>




So, on substituting all these values, we get




<h2>Hence,</h2>

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
<h2>ADDITIONAL INFORMATION :-</h2>
Sign of Trigonometric ratios in Quadrants
- sin (90°-θ) = cos θ
- cos (90°-θ) = sin θ
- tan (90°-θ) = cot θ
- csc (90°-θ) = sec θ
- sec (90°-θ) = csc θ
- cot (90°-θ) = tan θ
- sin (90°+θ) = cos θ
- cos (90°+θ) = -sin θ
- tan (90°+θ) = -cot θ
- csc (90°+θ) = sec θ
- sec (90°+θ) = -csc θ
- cot (90°+θ) = -tan θ
- sin (180°-θ) = sin θ
- cos (180°-θ) = -cos θ
- tan (180°-θ) = -tan θ
- csc (180°-θ) = csc θ
- sec (180°-θ) = -sec θ
- cot (180°-θ) = -cot θ
- sin (180°+θ) = -sin θ
- cos (180°+θ) = -cos θ
- tan (180°+θ) = tan θ
- csc (180°+θ) = -csc θ
- sec (180°+θ) = -sec θ
- cot (180°+θ) = cot θ
- sin (270°-θ) = -cos θ
- cos (270°-θ) = -sin θ
- tan (270°-θ) = cot θ
- csc (270°-θ) = -sec θ
- sec (270°-θ) = -csc θ
- cot (270°-θ) = tan θ
- sin (270°+θ) = -cos θ
- cos (270°+θ) = sin θ
- tan (270°+θ) = -cot θ
- csc (270°+θ) = -sec θ
- sec (270°+θ) = cos θ
- cot (270°+θ) = -tan θ
Answer:
Step-by-step explanation:
The two points can be made into a right triangle with the two sides defined by two lines drawn from the two given points. Use the Pythagorean Theorem to solve for the hypotenuse, the distance between the two points. See attached graph.
6^2 + 2^2 = x^2
36 + 4 = x^2
x^2 = 40
x = 6.32