Answer:
b. reducing molecules
Explanation:
Nicotinamide adenine dinucleotide (abbreviated NAD +, and also called diphosphopyridine nucleotide and Coenzyme I), is a coenzyme found in all living cells. The compound is a dinucleotide, as it consists of two nucleotides linked through their phosphate groups with a nucleotide that contains an adenosine ring and the other that contains nicotinamide.
In metabolism, NAD + participates in redox reactions (oxidoreduction), carrying electrons from one reaction to another.
Coenzyme, therefore, is found in two forms in cells: NAD + and NADH. NAD +, which is an oxidizing agent, accepts electrons from other molecules and becomes reduced, forming NADH, which can then be used as a reducing agent to donate electrons. These electron transfer reactions are the main function of NAD +. However, it is also used in other cellular processes, especially as a substrate for enzymes that add or remove chemical groups of proteins, in post-translational modifications. Due to the importance of these functions, the enzymes involved in the metabolism of NAD + are targets for drug discovery.
hi man how are you doing today
Answer:
Sometimes, chemical weathering dissolves large portions of limestone or other rock on the surface of the Earth to form a landscape called karst. In these areas, the surface rock is pockmarked with holes, sinkholes, and caves. The water transforms anhydrite into gypsum, one of the most common minerals on Earth.
Explanation:
I'm sorry if this isn't the answer you are looking for :(
Answer:
Check the areas that need excessive maintenance
Explanation: