Verify the following reduction formula:
1 answer:
Answer:
See Explanation.
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Distributive Property
- Equality Properties
<u>Algebra I</u>
<u>Algebra II</u>
<u>Pre-Calculus</u>
- Pythagorean Identities: tan²(x) = sec²(x) - 1
<u>Calculus</u>
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration Rule 1: 
Integration Rule 2: 
Integration 1: 
Integration by Parts: 
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
<u>Step 1: Define</u>

<u>Step 2: Rewrite</u>
- [Integral - Alg] Separate Exponents:

<u>Step 3: Identify Variables</u>
<em>Using LIPET, we define variables to use IBP.</em>
<em>Use Integration 1.</em>
![u = [sec(u)]^{n-2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sec^2(u)du\\du = (n-2)[sec(u)]^{n-3} sec(u)tan(u) \ \ \ \ \ \ \ \ v = tan(u)](https://tex.z-dn.net/?f=u%20%3D%20%5Bsec%28u%29%5D%5E%7Bn-2%7D%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20dv%20%3D%20sec%5E2%28u%29du%5C%5Cdu%20%3D%20%28n-2%29%5Bsec%28u%29%5D%5E%7Bn-3%7D%20sec%28u%29tan%28u%29%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20v%20%3D%20tan%28u%29)
<u>Step 4: Integrate</u>
- Integrate [IBP]:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - \int [{tan(u)(n-2)[sec(u)]^{n-3}sec(u)tan(u)} ]\, du](https://tex.z-dn.net/?f=%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20%3D%20tan%28u%29%5Bsec%28u%29%5D%5E%7Bn-2%7D%20-%20%5Cint%20%5B%7Btan%28u%29%28n-2%29%5Bsec%28u%29%5D%5E%7Bn-3%7Dsec%28u%29tan%28u%29%7D%20%5D%5C%2C%20du)
- [Integral - Alg] Multiply:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - \int [{tan^2(u)(n-2)[sec(u)]^{n-2}}] \, du](https://tex.z-dn.net/?f=%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20%3D%20tan%28u%29%5Bsec%28u%29%5D%5E%7Bn-2%7D%20-%20%5Cint%20%5B%7Btan%5E2%28u%29%28n-2%29%5Bsec%28u%29%5D%5E%7Bn-2%7D%7D%5D%20%5C%2C%20du)
- [integral - Int Rule 1] Simplify:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{tan^2(u)[sec(u)]^{n-2}}] \, du](https://tex.z-dn.net/?f=%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20%3D%20tan%28u%29%5Bsec%28u%29%5D%5E%7Bn-2%7D%20-%20%28n-2%29%5Cint%20%5B%7Btan%5E2%28u%29%5Bsec%28u%29%5D%5E%7Bn-2%7D%7D%5D%20%5C%2C%20du)
- [Integral - Pythagorean Identities] Rewrite:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{[sec^2(u) - 1][sec(u)]^{n-2}}] \, du](https://tex.z-dn.net/?f=%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20%3D%20tan%28u%29%5Bsec%28u%29%5D%5E%7Bn-2%7D%20-%20%28n-2%29%5Cint%20%5B%7B%5Bsec%5E2%28u%29%20-%201%5D%5Bsec%28u%29%5D%5E%7Bn-2%7D%7D%5D%20%5C%2C%20du)
- [Integral - Alg] Multiply/Distribute:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{sec^n(u)-[sec(u)]^{n-2}}] \, du](https://tex.z-dn.net/?f=%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20%3D%20tan%28u%29%5Bsec%28u%29%5D%5E%7Bn-2%7D%20-%20%28n-2%29%5Cint%20%5B%7Bsec%5En%28u%29-%5Bsec%28u%29%5D%5E%7Bn-2%7D%7D%5D%20%5C%2C%20du)
- [Integral - Int Rule 2] Rewrite:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2) [\int {sec^n(u)} \, du - \int {[sec(u)]^{n-2}} \, du ]](https://tex.z-dn.net/?f=%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20%3D%20tan%28u%29%5Bsec%28u%29%5D%5E%7Bn-2%7D%20-%20%28n-2%29%20%5B%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20-%20%5Cint%20%7B%5Bsec%28u%29%5D%5E%7Bn-2%7D%7D%20%5C%2C%20du%20%5D)
- [Integral - Alg] Distribute:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^{n-2}} \, du](https://tex.z-dn.net/?f=%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20%3D%20tan%28u%29%5Bsec%28u%29%5D%5E%7Bn-2%7D%20-%20%28n-2%29%20%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20%2B%20%28n-2%29%5Cint%20%7B%5Bsec%28u%29%5D%5E%7Bn-2%7D%7D%20%5C%2C%20du)
- Rewrite:
![\int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^{n-2}} \, du](https://tex.z-dn.net/?f=%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20%3D%20sec%5E%7Bn-2%7D%28u%29tan%28u%29%20-%20%28n-2%29%20%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20%2B%20%28n-2%29%5Cint%20%7B%5Bsec%28u%29%5D%5E%7Bn-2%7D%7D%20%5C%2C%20du)
- [Integral - Alg] Isolate Integral Term:
![\int {sec^n(u)} \, du + (n-2) \int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {[sec(u)]^{n-2}} \, du](https://tex.z-dn.net/?f=%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20%2B%20%28n-2%29%20%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20%3D%20sec%5E%7Bn-2%7D%28u%29tan%28u%29%20%2B%20%28n-2%29%5Cint%20%7B%5Bsec%28u%29%5D%5E%7Bn-2%7D%7D%20%5C%2C%20du)
- [Integral - Alg] Combine Like Terms:
![(n - 1)\int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {[sec(u)]^{n-2}} \, du](https://tex.z-dn.net/?f=%28n%20-%201%29%5Cint%20%7Bsec%5En%28u%29%7D%20%5C%2C%20du%20%3D%20sec%5E%7Bn-2%7D%28u%29tan%28u%29%20%2B%20%28n-2%29%5Cint%20%7B%5Bsec%28u%29%5D%5E%7Bn-2%7D%7D%20%5C%2C%20du)
- [Integral 2 - Alg] Rewrite:

- [Integral - Alg] Isolate Original Integral:

And we have proved the Reduction Formula!
You might be interested in
This statement is false.
What you described is the volume of a solid. The surface area is the outermost layer of something or the outside part of it.
Answer:
x=-6
Step-by-step explanation:
7x-9x=6+6
-2x=12
x=-6
I think that the right answers are a and b
You dont have a complete question
That is so confusing the way theyou word it sometimes is like what the...what?