1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scilla [17]
3 years ago
15

Verify the following reduction formula:

Mathematics
1 answer:
melamori03 [73]3 years ago
8 0

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms

<u>Algebra II</u>

  • Exponential Rules

<u>Pre-Calculus</u>

  • Pythagorean Identities: tan²(x) = sec²(x) - 1

<u>Calculus</u>

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration Rule 1:         \int {cf(x)} \, dx = c\int {f(x)} \, dx

Integration Rule 2:        \int {f(x) \pm g(x)} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration 1:                 \int {sec^2(u)} \, du = tan(u) + C

Integration by Parts:    \int {u} \, dv = uv -  \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Step-by-step explanation:

<u>Step 1: Define</u>

\int {sec^n(u)} \, du

<u>Step 2: Rewrite</u>

  1. [Integral - Alg] Separate Exponents:                    \int {sec^n(u)} \, du = \int {sec^{n-2}(u)sec^2(u)} \, du

<u>Step 3: Identify Variables</u>

<em>Using LIPET, we define variables to use IBP.</em>

<em>Use Integration 1.</em>

u = [sec(u)]^{n-2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sec^2(u)du\\du = (n-2)[sec(u)]^{n-3} sec(u)tan(u) \ \ \ \ \ \ \ \  v = tan(u)

<u>Step 4: Integrate</u>

  1. Integrate [IBP]:   \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - \int [{tan(u)(n-2)[sec(u)]^{n-3}sec(u)tan(u)} ]\, du
  2. [Integral - Alg] Multiply:                  \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - \int [{tan^2(u)(n-2)[sec(u)]^{n-2}}] \, du
  3. [integral - Int Rule 1] Simplify:     \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{tan^2(u)[sec(u)]^{n-2}}] \, du
  4. [Integral - Pythagorean Identities] Rewrite:   \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{[sec^2(u) - 1][sec(u)]^{n-2}}] \, du
  5. [Integral - Alg] Multiply/Distribute:   \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{sec^n(u)-[sec(u)]^{n-2}}] \, du
  6. [Integral - Int Rule 2] Rewrite:     \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2) [\int {sec^n(u)} \, du - \int {[sec(u)]^{n-2}} \, du ]
  7. [Integral - Alg] Distribute:   \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^{n-2}} \, du
  8. Rewrite:     \int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^{n-2}} \, du
  9. [Integral - Alg] Isolate Integral Term:     \int {sec^n(u)} \, du + (n-2) \int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {[sec(u)]^{n-2}} \, du
  10. [Integral - Alg] Combine Like Terms:     (n - 1)\int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {[sec(u)]^{n-2}} \, du
  11. [Integral 2 - Alg] Rewrite:     (n - 1)\int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {sec^{n-2}(u)} \, du
  12. [Integral - Alg] Isolate Original Integral:     \int {sec^n(u)} \, du = \frac{sec^{n-2}(u)tan(u)}{n-1}  + \frac{n-2}{n-1} \int {sec^{n-2}(u)} \, du

And we have proved the Reduction Formula!

You might be interested in
The surface area is the amount a solid can hold.<br><br> True<br> False
sveticcg [70]
This statement is false.

What you described is the volume of a solid. The surface area is the outermost layer of something or the outside part of it.
7 0
3 years ago
Read 2 more answers
What is 7x-6=9x+6? PLEASE HELP ME!!!!!!!!!!!!!
vovangra [49]

Answer:

x=-6

Step-by-step explanation:

7x-9x=6+6

-2x=12

x=-6

5 0
3 years ago
Read 2 more answers
Trisha needs to make at least 50 gift bags for an event. Each gift bag will contain at least 1 thumb drive or 1 key chain. She w
DENIUS [597]
I think that the right answers are a and b

5 0
3 years ago
Read 2 more answers
Find the number of rooms per hour that Jake, Lionel, and Donald can paint working together if t is 6 hours.
lara31 [8.8K]
You dont have a complete question

7 0
3 years ago
I need help with question #2
skelet666 [1.2K]
That is so confusing the way theyou word it sometimes is like what the...what?
7 0
3 years ago
Other questions:
  • PLZZZZZ NEED HELP!!!!!!
    6·1 answer
  • What is the median of the data
    6·1 answer
  • 3 AND 4 please!!!???!!
    11·1 answer
  • Chang knows one side of a triangle is 13 cm Which set of two sides is possible for the lengths of the other two sides of this
    8·1 answer
  • You and your friend are selling tickets to a charity event. You sell 7 adult tickets and 16 student tickets for $120. Your frien
    8·1 answer
  • Which is the graph of the line y - 2 = 3(x - 1)?
    8·1 answer
  • use digits to write a number for the following. : seven tenths . three hundreths, and eight thousandths and then (. )​
    9·1 answer
  • Find the slope of the line y = 5x + 4
    7·2 answers
  • Can someone please help?
    8·1 answer
  • 25 point to who gets these problems plus thank
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!