1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scilla [17]
3 years ago
15

Verify the following reduction formula:

Mathematics
1 answer:
melamori03 [73]3 years ago
8 0

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms

<u>Algebra II</u>

  • Exponential Rules

<u>Pre-Calculus</u>

  • Pythagorean Identities: tan²(x) = sec²(x) - 1

<u>Calculus</u>

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration Rule 1:         \int {cf(x)} \, dx = c\int {f(x)} \, dx

Integration Rule 2:        \int {f(x) \pm g(x)} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration 1:                 \int {sec^2(u)} \, du = tan(u) + C

Integration by Parts:    \int {u} \, dv = uv -  \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Step-by-step explanation:

<u>Step 1: Define</u>

\int {sec^n(u)} \, du

<u>Step 2: Rewrite</u>

  1. [Integral - Alg] Separate Exponents:                    \int {sec^n(u)} \, du = \int {sec^{n-2}(u)sec^2(u)} \, du

<u>Step 3: Identify Variables</u>

<em>Using LIPET, we define variables to use IBP.</em>

<em>Use Integration 1.</em>

u = [sec(u)]^{n-2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sec^2(u)du\\du = (n-2)[sec(u)]^{n-3} sec(u)tan(u) \ \ \ \ \ \ \ \  v = tan(u)

<u>Step 4: Integrate</u>

  1. Integrate [IBP]:   \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - \int [{tan(u)(n-2)[sec(u)]^{n-3}sec(u)tan(u)} ]\, du
  2. [Integral - Alg] Multiply:                  \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - \int [{tan^2(u)(n-2)[sec(u)]^{n-2}}] \, du
  3. [integral - Int Rule 1] Simplify:     \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{tan^2(u)[sec(u)]^{n-2}}] \, du
  4. [Integral - Pythagorean Identities] Rewrite:   \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{[sec^2(u) - 1][sec(u)]^{n-2}}] \, du
  5. [Integral - Alg] Multiply/Distribute:   \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2)\int [{sec^n(u)-[sec(u)]^{n-2}}] \, du
  6. [Integral - Int Rule 2] Rewrite:     \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2) [\int {sec^n(u)} \, du - \int {[sec(u)]^{n-2}} \, du ]
  7. [Integral - Alg] Distribute:   \int {sec^n(u)} \, du = tan(u)[sec(u)]^{n-2} - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^{n-2}} \, du
  8. Rewrite:     \int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^{n-2}} \, du
  9. [Integral - Alg] Isolate Integral Term:     \int {sec^n(u)} \, du + (n-2) \int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {[sec(u)]^{n-2}} \, du
  10. [Integral - Alg] Combine Like Terms:     (n - 1)\int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {[sec(u)]^{n-2}} \, du
  11. [Integral 2 - Alg] Rewrite:     (n - 1)\int {sec^n(u)} \, du = sec^{n-2}(u)tan(u) + (n-2)\int {sec^{n-2}(u)} \, du
  12. [Integral - Alg] Isolate Original Integral:     \int {sec^n(u)} \, du = \frac{sec^{n-2}(u)tan(u)}{n-1}  + \frac{n-2}{n-1} \int {sec^{n-2}(u)} \, du

And we have proved the Reduction Formula!

You might be interested in
<img src="https://tex.z-dn.net/?f=Simplify%3A%5Csqrt%7B64x%5E8y%5E2z%5E1%5E2%7D" id="TexFormula1" title="Simplify:\sqrt{64x^8y^2
aksik [14]

Answer:

theres nothing here....

4 0
3 years ago
????????????????????
Romashka [77]
There’s literally no actual question so how could we help?
8 0
3 years ago
Integral of u' over (u^2-a^2)
avanturin [10]

Answer:

=-a²+u²

Step-by-step explanation:

hope it's help.

By Brainliest please.

5 0
3 years ago
The figure is the net for a rectangular prism.
Dovator [93]
The surface area of the rectangular prism is 544 cm^2.

There are 3 pairs of different rectangles that form the rectangular prism.

If we find the area of each and add them up, we will have the surface area.

Here are the 3 pairs of rectangles:
6 x 16 = 96
8 x 16 = 128
6 x 8 = 48

2(96) + 2(128) + 2(48) = 544
4 0
3 years ago
I WILL AWARD BRAINLIEST TO RIGHT ANSWER
Jet001 [13]

Answer:

y = -2000x+30000

Step-by-step explanation:

Hi. So, you are just setting up a linear equation using slope intercept data. The slope being -2000 (because it is descending) and the intercept being 30,000 at t=0.

y = -2000x+30000

6 0
3 years ago
Other questions:
  • The graph shows Susan’s distance from her office, in yards, as she runs errands, over time, in minutes.
    6·1 answer
  • Simplify 6 plus the square root of negative 80.
    8·1 answer
  • What is 692.14 in word form
    15·1 answer
  • PLEASE HELP!!!!!!!
    15·1 answer
  • What’s the difference from linear and non linear
    10·1 answer
  • PLEASE ANSWER ASAP AND PROVIDE EXPLANATION!
    14·2 answers
  • Which of the following is the equation of a line perpendicular to the line Y=-1/3x+1, passing through the point (2,7)?
    12·1 answer
  • What does 15=-3y+21x in slope intercept form
    6·1 answer
  • Factorise : 20 ଶb – 30 aଶ + 40 abc
    13·1 answer
  • This shows two semicircles connected to a rectangle.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!