Answer:
AY = 16
IY = 9
FG = 30
PA = 24
Step-by-step explanation:
<em>The </em><em>centroid </em><em>of the triangle </em><em>divides each median</em><em> at the ratio </em><em>1: 2</em><em> from </em><em>the base</em>
Let us solve the problem
In Δ AFT
∵ Y is the centroid
∵ AP, TI, and FG are medians
→ By using the rule above
∴ Y divides AP at ratio 1: 2 from the base FT
∴ AY = 2 YP
∵ YP = 8
∴ AY = 2(8)
∴ AY = 16
∵ PA = AY + YP
∴ AP = 16 + 8
∴ AP = 24
∵ Y divides TI at ratio 1: 2 from the base FA
∴ TY = 2 IY
∵ TY = 18
∴ 18 = 2
→ Divide both sides by 2
∴ 9 = IY
∴ IY = 9
∵ Y divides FG at ratio 1:2 from the base AT
∴ FY = 2 YG
∵ FY = 20
∴ 20 = 2 YG
→ Divide both sides by 2
∴ 10 = YG
∴ YG = 10
∵ FG = YG + FY
∴ FG = 10 + 20
∴ FG = 30
Answer:
7(6m - 4) = -364
multiply 7 for both variables in the parenthesis
42m - 28 = -364
move 28 to other side
42m= -336
divide 42 on both sides
m= -8
Answer:
<h3>
B. perimeter</h3>
Step-by-step explanation:
I think this would make the most sense.
Answer:
0.0227272727
Step-by-step explanation:
what I got on calculator
Answer:
5 and 11/24ths
Step-by-step explanation: