Answer:
108° =
radians
Step-by-step explanation:
To convert from degrees to radians
radians = degree measure ×
, thus
radian measure = 108° ×
= 
3/12, or 1/4, are defective.
he tests 4/12, or 1/3, fuses.
1/4(1/3) = 1/12 ?
i’m sorry if this is wrong. i’m not good at probability!
- Diameter of cylinder is <u>1</u><u>4</u><u> </u><u>units.</u>
<h3><u>Explamation </u><u>:</u></h3>
<em><u>Given </u></em><em><u>:</u></em><em><u>-</u></em>
- Volume of cylinder = 245π cubic units
- Height of cylinder = 5 units
<em><u>To </u></em><em><u>Find </u></em><em><u>:</u></em><em><u>-</u></em>
<em><u>Solution </u></em><em><u>:</u></em><em><u>-</u></em>
<em>Firstly </em><em>lets </em><em>calculate </em><em>radius </em><em>of </em><em>cylinder </em><em>by </em><em>using </em><em>formula </em><em>of </em><em>volume </em><em>of </em><em>cylinder,</em><em> </em><em>as </em><em>we </em><em>know </em><em>that;</em>
- Volume of cylinder = πr²h
<em>Putting </em><em>all </em><em>values </em><em>we </em><em>get;</em>
➸ 245π = π × r² × 5
<em>By </em><em>cutting </em><em>'π' </em><em>with </em><em>'π' </em><em>we </em><em>get;</em>
➸ 245 = r² × 5
➸ 245/5 = r²
➸ 49 = r²
➸ √(49) = r²
➸ √(<u>7</u><u> </u><u>×</u><u> </u><u>7</u><u>)</u> = r²
➸ 7 = r
➸ r = 7 units
- <u>Hence,</u><u> </u><u>radius </u><u>of </u><u>cylinder </u><u>is </u><u>7</u><u> </u><u>units.</u>
<em>Now </em><em>lets </em><em>calculate </em><em>its </em><em>diameter,</em><em> </em><em>as </em><em>we </em><em>know </em><em>that;</em>
<em>Putting </em><em>all </em><em>values </em><em>we </em><em>get;</em>
➸ Diameter = 7 × 2
➸ Diameter = 14 units
- <u>Hence,</u><u> </u><u>diameter </u><u>of </u><u>cylinder </u><u>is </u><u>1</u><u>4</u><u> </u><u>units.</u>
Answer:
4 ft
Step-by-step explanation:
<h3>Area of rectangle:</h3>
Area = 30 square ft
base = 7.5 ft


6x - 2y = 2
-3x + 4y = 5....multiply by 2
-----------------
6x - 2y = 2
-6x + 8y = 10 (result of multiplying by 2)
-----------------add
6y = 12
y = 12/6
y = 2
6x - 2y = 2
6x - 2(2) = 2
6x - 4 = 2
6x = 2 + 4
6x = 6
x = 6/6
x = 1
solution is (1,2)