Answer:
(c) III
Step-by-step explanation:
If you simplify the equations and the left side is identical to the right side, then there are an infinite number of solutions: the equation is true for all values of x.
Another way to simplify the equation is to subtract the right side from both sides. If that simplifies to 0 = 0, then there are an infinite number of solutions.
__
<h3>I. </h3>
2x -6 -6x = 2 -4x . . . . eliminate parentheses
-4x -6 = -4x +2 . . . . no solutions (no value of x makes this true)
__
<h3>II.</h3>
x +2 = 15x +10 +2x . . . . eliminate parentheses
x +2 = 17x +10 . . . . one solution (x=-1/2)
__
<h3>III.</h3>
4 +6x = 6x +4 . . . . eliminate parentheses
6x +4 = 6x +4 . . . . infinite solutions
__
<h3>IV.</h3>
6x +24 = 2x -4 . . . . eliminate parentheses; one solution (x=-7)
1/6d + 2/3 = 1/4(d - 2)
First, simplify

to

/ Your problem should look like:

+

=

(d - 2)
Second, simplify

to

/ Your problem should look like:

+

=
Third, multiply both sides by 12 (the LCM of 6,4) / Your problem should look like: 2d + 8 = 3(d - 2)
Fourth, expand. / Your problem should look like: 2d + 8 = 3d - 6
Fifth, subtract 2d from both sides. / Your problem should look like: 8 = 3d - 6 - 2d
Sixth, simplify 3d - 6 - 2d to d - 6 / Your problem should look like: 8 = d - 6
Seventh,add 6 to both sides. / Your problem should look like: 8 + 6 = d
Eighth, simplify 8 + 6 to 14 / Your problem should look like:14 = d
Ninth, switch sides. / Your problem should look like: d = 14
Answer:
d = 14
Answer:
(3x + 5)(9x^2 - 15x + 25)
Step-by-step explanation:
27x^3 + 125
= (3x)^3 + 5^3
= (3x + 5) ((3x)^2 - (3x)(5) + 5^2)
= (3x + 5)(9x^2 - 15x + 25)
FYI: a³ + b³ = (a + b)(a² – ab + b²)