Answer:
0.0417
Step-by-step explanation:
Given the following;
p = 0.7, n=121
The sampling distribution of sample proportion will be approximately normal with mean
\mu_{\hat{p}}=p=0.7
and standard deviation
\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.7\cdot 0.2}{121}}=0.0417
Check attachment for the curve diagram.
Answer:
32.666666666667
http://www.alcula.com/calculators/statistics/mean-absolute-deviation/
Insert data and it will calculate the (MAD).
F(x) = 2^x; h(x) = x^3 + x + 8
Table
x f(x) = 2^x h(x) = x^3 + x + 8
0 2^0 = 1 0 + 0 + 8 = 8
1 2^1 = 2 1^3 + 1 + 8 = 10
2 2^2 = 4 2^3 + 2 + 8 = 8 + 2 + 8 = 18
3 2^3 = 8 3^3 + 3 + 8 = 27 + 3 + 8 = 38
4 2^2 = 16 4^3 + 4 + 8 = 76
10 2^10 = 1024 10^3 +10 + 8 = 1018
9 2^9 = 512 9^3 + 9 + 8 = 729 + 9 + 8 = 746
Answer: an approximate value of 10
Answer:
c
Step-by-step explanation: