1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
3 years ago
5

What angle are they ​

Mathematics
2 answers:
mr_godi [17]3 years ago
8 0

Answer:

adjacent angles

Step-by-step explanation:

they dont make a straight line so they arent supplementary. they arent complementary because they dont make a right angle

CaHeK987 [17]3 years ago
7 0

i need points yk, plz give brainliest

You might be interested in
What is the equation, in slope-intercept form, of the line
Serga [27]

Answer: y=3x-7

Step-by-step explanation:

(2,2) and (-1,3) lie on the given line, so its slope is \frac{3-2}{-1-2}=-\frac{1}{3}

Since perpendicular lines have slopes that are negative reciprocals, the slope of the given line is 3.

Substituting into point slope form,

y+1=3(x-2)\\y+1=3x-6\\\boxed{y=3x-7}

3 0
2 years ago
The Hyperbolic Sine (sinh(x)) and Hyperbolic Cosine (cosh(x)) functions are defined as such: sin h(x) = e^x - e^-x/2 cosh(x) = e
labwork [276]

Answer:

y-incercepts:

sinh(x):0, cosh(x)=1

Limits:

positive infinity: sinh(x): infinity, cosh(x): infinity

negative infinity: sinh(x): - infinity, cosh(x): infinity

Step-by-step explanation:

We are given that

\sinh(x)=\frac{e^{x}-e^{-x}}{2}

\cosh(x)=\frac{e^{x}+e^{-x}}{2}

To find out the y-incerpt of a function, we just need to replace x by 0. Recall that e^{0}=1. Then,

\sinh(0) = \frac{1-1}{2}=0

\cosh(0) = \frac{1+1}{2}=1

For the end behavior, recall the following:

\lim_{x\to \infty}e^{x} = \infty, \lim_{x\to \infty}e^{-x} = 0

\lim_{x\to -\infty}e^{x} = 0, \lim_{x\to -\infty}e^{-x} = \infty

Using the properties of limits, we have that

\lim_{x\to \infty} \sinh(x) =\frac{1}{2}(\lim_{x\to \infty}e^{x}-\lim_{x\to \infty}e^{-x})=(\infty -0) = \infty

\lim_{x\to \infty} \cosh(x) =\frac{1}{2}(\lim_{x\to \infty}e^{x}+\lim_{x\to \infty}e^{-x}) =(\infty -0)= \infty

\lim_{x\to -\infty} \sinh(x) =\frac{1}{2}(\lim_{x\to -\infty}e^{x}-\lim_{x\to -\infty}e^{-x}) = (0-\infty)=-\infty

\lim_{x\to -\infty} \cosh(x) =\frac{1}{2}(\lim_{x\to -\infty}e^{x}+\lim_{x\to -\infty}e^{-x}) =(0+\infty)= \infty

8 0
3 years ago
The function rule for this graph is y =__ x +__
myrzilka [38]
Y=-1/2x + 2
I’m pretty sure that this is the answer :))
4 0
3 years ago
Read 2 more answers
Determine the x-intercept and y-intercept of the following linear equations
Blizzard [7]

Answer:

Step-by-step explanation:

the x intercept takes coordinate (x,0)

the y intercept takes coordinate (0,y)

                                         x intercept                        y intercept

40: x+y=5                          (5,0)                                      (0,5)

x=0 , y=5, when y=0 x=5

41: x-y=5                            (5,0)                                      (0,-5)

x=0, -y=5 then y=-5, when y=0, x=5

42: 3x+4y=12                     (4,0)                                      (0,3)

x=0, 4y=12⇒y=12/4⇒y=3

y=0, 3x=12⇒x=12/3⇒x=4

43: 2x+3y=6                      (3,0)                                       (0,2)

x=0 , 3y=6⇒y=6/3=2

y=0 ,3y=6 ⇒ y=6/3 ⇒y=2

44: 3x+4y=-24                   (-8,0)                                      (0,-6)

x=0 , 4y=-24⇒y=-24/4 ⇒ y=-6

y=0 , 3x=-24⇒ x=-24/3⇒x=-8

45: 1/3x+2/3y=5/6            (5/2,0)                                    (0,5/4)

x=0 , 2/3 y=5/6 ⇒12y=15 ⇒ y=15/12 ⇒y=5/4

y=0 , 1/3 x=5/6 ⇒6x=15 ⇒x=15/6 ⇒x=5/2

46: x=-2                             (-2,0)                                   no y intercept

it is vertical line , there is no y intercept

47: y=15                    no x intercept                               (0,15)

horixzontal line, no x intercept

48: 3x-7y=8              (8/3,0)                                             (0,-8/7)

x=0 , -7y=8 ⇒y=-8/7

y=0 , 3x=8 ⇒x=8/3

7 0
4 years ago
In 2007, the value of a house was £119,995 From 2007 to 2018, house prices decreased by 9.4%. How much has the value of the hous
labwork [276]

Answer: £11,279.53

Step-by-step explanation:

Given

In 2007, the price of the house was £119,995

Price decreases by 9.4%

\Rightarrow \text{Current Price}=\text{Old Price}-9.4\%\text{Old Price}\\\Rightarrow 119,995-9.4\%\ \text{of}\ 119,995\\\Rightarrow 119,995(1-0.094)=119,995\times 0.906\\\Rightarrow 108,715.47

Price decreased by 119,995-108,715.47=£11,279.53

3 0
3 years ago
Other questions:
  • Help please! Thank you!
    12·1 answer
  • Use the substitution method to solve the system of equations.<br><br>8x + 5y = 9 <br>y = x + 7
    8·1 answer
  • Plz help i just started pretty confused
    13·1 answer
  • The radius of a circumference of a 26
    11·1 answer
  • Find the surface area of the figure
    9·1 answer
  • The ratio of 1.5 m to 10 cm is <br> 1. 1:15 <br> 2. 15: 10 <br> 3. 10:15 <br> 4. 15:1
    10·1 answer
  • Can someone please check my answer !!!
    5·2 answers
  • 1/5 fraction on a number line. find difference and expression
    6·1 answer
  • You have been gotten a job offer and the company wants to start you out at
    13·1 answer
  • How I can answer this question, NO LINKS, If you answer correctly I will give u brainliest!
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!