angles, bisectors, angle relationships, and how to classify polygons. 1.1 Points, Lines AB or any combination of two of the letters A,C or B in any order. c) Yes, they lie on. If the two endpoints are (-5, 6) and (3, 4), then the midpoint is (-1, 4). -1 is halfway 108◦. = 72. ◦. Example 6: Are ∠CDA and ∠DAB a linear pair?
 
        
             
        
        
        
Answer:
A) x=39
Step-by-step explanation:
117 = 3x
117 divided by 3 = 39
3x = 117
3(39) = 117
117 = 117
A) x = 39
 
        
             
        
        
        
Answer:
B) 4√2
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Parametric Differentiation
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Arc Length Formula [Parametric]:                                                                         ![\displaystyle AL = \int\limits^b_a {\sqrt{[x'(t)]^2 + [y(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Csqrt%7B%5Bx%27%28t%29%5D%5E2%20%2B%20%5By%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

Interval [0, π]
<u>Step 2: Find Arc Length</u>
- [Parametrics] Differentiate [Basic Power Rule, Trig Differentiation]:          
- Substitute in variables [Arc Length Formula - Parametric]:                       ![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{[1 + sin(t)]^2 + [-cos(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B%5B1%20%2B%20sin%28t%29%5D%5E2%20%2B%20%5B-cos%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx) 
- [Integrand] Simplify:                                                                                       ![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx) 
- [Integral] Evaluate:                                                                                         ![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx = 4\sqrt{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx%20%3D%204%5Csqrt%7B2%7D) 
Topic: AP Calculus BC (Calculus I + II)
Unit: Parametric Integration
Book: College Calculus 10e
 
        
             
        
        
        
Answer:
<h2>The x-coordinate after the rotation is -10.</h2>
Step-by-step explanation:
A 810° rotation is equal to a 90° rotation. So, the transformation described gives the same result than rotating 90° only.
A 90° counterclockwise rotation is defined by the rule

The given coordinate is  . Using the rule, we have
. Using the rule, we have

Therefore, the x-coordinate after the rotation is -10.
 
        
             
        
        
        
The answer is:  15 .
__________________________                                                _____
{Note:  If this is a physics problem ; and the formula: "F = m*a" is for:  
    "Force = mass * acceleration" ;  be sure that the correct units are used!}.
_______________________________________________________
Explanation:
_______________________________
 F = m * a ;
Given m = 5 ;
        
           a = 3 ;
___________________
 F = 5 * 3 = 15 .
_____________________