We will use the right Riemann sum. We can break this integral in two parts.

We take the interval and we divide it n times:

The area of the i-th rectangle in the right Riemann sum is:

For the first part of our integral we have:

For the second part we have:

We can now put it all together:
![\sum_{i=1}^{i=n} [(\Delta x)^4 i^3-6(\Delta x)^2i]\\\sum_{i=1}^{i=n}[ (\frac{3}{n})^4 i^3-6(\frac{3}{n})^2i]\\ \sum_{i=1}^{i=n}(\frac{3}{n})^2i[(\frac{3}{n})^2 i^2-6]](https://tex.z-dn.net/?f=%5Csum_%7Bi%3D1%7D%5E%7Bi%3Dn%7D%20%5B%28%5CDelta%20x%29%5E4%20i%5E3-6%28%5CDelta%20x%29%5E2i%5D%5C%5C%5Csum_%7Bi%3D1%7D%5E%7Bi%3Dn%7D%5B%20%28%5Cfrac%7B3%7D%7Bn%7D%29%5E4%20i%5E3-6%28%5Cfrac%7B3%7D%7Bn%7D%29%5E2i%5D%5C%5C%0A%5Csum_%7Bi%3D1%7D%5E%7Bi%3Dn%7D%28%5Cfrac%7B3%7D%7Bn%7D%29%5E2i%5B%28%5Cfrac%7B3%7D%7Bn%7D%29%5E2%20i%5E2-6%5D)
We can also write n-th partial sum:
Answer:
Step-by-step explanation:
I assume that XY is midsegment of a triangle, then MO = 2 XY
9x - 20 = 2( 3x - 4 )
9x - 20 = 6x - 8
3x = 12
x = 4
MO = 9(4) - 20 = 16 units
Answer:
$234,516.7371
Step-by-step explanation:
A = P (1 + [ r / n ]) ^ nt
A = 175000(1 +
)^1(2002-1996)
= 175000(1.05)^6
= 175000(1.340095640625)
= 234,516.7371