1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mars2501 [29]
3 years ago
10

Jorge drew an angle.

Mathematics
2 answers:
Naddika [18.5K]3 years ago
6 0

Answer:lines endpoint

Step-by-step explanation:

Dima020 [189]3 years ago
5 0
Lines and endpoint so I agree
You might be interested in
Apply the method of undetermined coefficients to find a particular solution to the following system.wing system.
jarptica [38.1K]
  • y''-y'+y=\sin x

The corresponding homogeneous ODE has characteristic equation r^2-r+1=0 with roots at r=\dfrac{1\pm\sqrt3}2, thus admitting the characteristic solution

y_c=C_1e^x\cos\dfrac{\sqrt3}2x+C_2e^x\sin\dfrac{\sqrt3}2x

For the particular solution, assume one of the form

y_p=a\sin x+b\cos x

{y_p}'=a\cos x-b\sin x

{y_p}''=-a\sin x-b\cos x

Substituting into the ODE gives

(-a\sin x-b\cos x)-(a\cos x-b\sin x)+(a\sin x+b\cos x)=\sin x

-b\cos x+a\sin x=\sin x

\implies a=1,b=0

Then the general solution to this ODE is

\boxed{y(x)=C_1e^x\cos\dfrac{\sqrt3}2x+C_2e^x\sin\dfrac{\sqrt3}2x+\sin x}

  • y''-3y'+2y=e^x\sin x

\implies r^2-3r+2=(r-1)(r-2)=0\implies r=1,r=2

\implies y_c=C_1e^x+C_2e^{2x}

Assume a solution of the form

y_p=e^x(a\sin x+b\cos x)

{y_p}'=e^x((a+b)\cos x+(a-b)\sin x)

{y_p}''=2e^x(a\cos x-b\sin x)

Substituting into the ODE gives

2e^x(a\cos x-b\sin x)-3e^x((a+b)\cos x+(a-b)\sin x)+2e^x(a\sin x+b\cos x)=e^x\sin x

-e^x((a+b)\cos x+(a-b)\sin x)=e^x\sin x

\implies\begin{cases}-a-b=0\\-a+b=1\end{cases}\implies a=-\dfrac12,b=\dfrac12

so the solution is

\boxed{y(x)=C_1e^x+C_2e^{2x}-\dfrac{e^x}2(\sin x-\cos x)}

  • y''+y=x\cos(2x)

r^2+1=0\implies r=\pm i

\implies y_c=C_1\cos x+C_2\sin x

Assume a solution of the form

y_p=(ax+b)\cos(2x)+(cx+d)\sin(2x)

{y_p}''=-4(ax+b-c)\cos(2x)-4(cx+a+d)\sin(2x)

Substituting into the ODE gives

(-4(ax+b-c)\cos(2x)-4(cx+a+d)\sin(2x))+((ax+b)\cos(2x)+(cx+d)\sin(2x))=x\cos(2x)

-(3ax+3b-4c)\cos(2x)-(3cx+3d+4a)\sin(2x)=x\cos(2x)

\implies\begin{cases}-3a=1\\-3b+4c=0\\-3c=0\\-4a-3d=0\end{cases}\implies a=-\dfrac13,b=c=0,d=\dfrac49

so the solution is

\boxed{y(x)=C_1\cos x+C_2\sin x-\dfrac13x\cos(2x)+\dfrac49\sin(2x)}

7 0
3 years ago
Somebody please help!! pleaseeee
Stolb23 [73]
D...................
4 0
2 years ago
Read 2 more answers
Can i have help this it is the picture below
34kurt

Answer:

wow

Step-by-step explanation:

thats hard ikd

6 0
2 years ago
Read 2 more answers
Find the hypotenuse of a 45-45-90 triangle with legs equal to 7
madam [21]

Answer:

Square root of 98

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
.....................................
Mandarinka [93]

\frac{5}{a + 3} = \frac{3}{a - 2}

5(a - 2) = 3(a + 3)

5a - 10 = 3a + 9

5a - 3a = 9 + 10

2a = 19

a = \frac{19}{2} = 9 \frac{1}{2}

Answer = D.) a = 9 \frac{1}{2}

\textbf{Spymore}​

4 0
3 years ago
Other questions:
  • A large container of juice cost $1.95 less than three times the cost of the small container of juice what is the cost of a launc
    7·1 answer
  • What is the distance in feet if you runs 8.05 kilometers every day?
    7·1 answer
  • PLEASE ANSWER THIS AS SOON AS POSSIBLE
    9·1 answer
  • In the diagram, AC =BD.<br><br> A.true<br> B.false
    7·1 answer
  • What is 62394 rounded to the nearest ten
    11·1 answer
  • Math word problem, please help!!
    13·2 answers
  • The daily high temperature for the past two weeks in Orlando. ( 89, 90, 88, 91, 82, 90, 88, 88, 86, 90, 92, 87, 89, 86) Find the
    13·2 answers
  • Estimate 874,238 – 228,759 using front-end estimation. (help please!!)
    14·1 answer
  • Let
    12·1 answer
  • CAN SOMEONE PLS HELP ME WITH THIS? ITS SO URGENT<br> (Pls show solution too)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!