Two positive integers have gcd (a, b) = 15 and lcm (a, b) = 90. Those two numbers are 15 and 90 or 30 and 45.
Suppose we have 2 positive integers, a and b, then:
gcd (a, b) = the greatest common divisor = common prime factors of a and b
lcm (a, b) = the least common multiple = multiplication of the greatest common prime factors of a and b
In the given problem:
gcd (a, b) = 15
prime factorization of 15:
15 = 3 x 5
Hence,
a = 3 x 5 x ....
b = 3 x 5 x ....
lcm (a, b) = 90
prime factorization of 90:
90 = 3 x 5 x 2 x 3
Therefore the possible pairs of a and b are:
Combination 1:
a = 3 x 5 = 15
b = 3 x 5 x 2 x 3 = 90
Combination 2:
a = 3 x 5 x 2 = 30
b = 3 x 5 x 3 = 35
We can conclude the two integers are 15 and 90 or 30 and 45.
Learn more about gcd here:
brainly.com/question/16969353
#SPJ4
The answer is c. i took this test
Answer:
In geometry, a branch of mathematics, perpendicular lines are defined as two lines that meet or intersect each other at right angles (90°).
Answered by GAUTHMATH
Answer:
FV= $21,038.28
Step-by-step explanation:
Giving the following information:
Initial investment (PV)= $15,000
Interest rate (i)= 7% compounded annually
Number of periods (n)= 5
<u>To calculate the future value (FV), we need to use the following formula:</u>
FV= PV*(1 + i)^n
FV= 15,000*(1.07^5)
FV= $21,038.28
615,472 is the answer, just write that in word form (six hundred fifteen thousand, four hundred seventy two)