Answer:
Compressions and Rarefactions
<em>A vibrating tuning fork is capable of creating such a longitudinal wave. As the tines of the fork vibrate back and forth, they push on neighboring air particles. The forward motion of a tine pushes air molecules horizontally to the right and the backward retraction of the tine creates a low-pressure area allowing the air particles to move back to the left.</em>
Explanation:
These regions are known as compressions and rarefactions respectively. The compressions are regions of high air presure while the rarefactions are regions of low air pressure.
<em>Sound waves can also be shown in a standard x vs y graph, as shown here. This allows us to visualise and work with waves from a mathematical point of view. The resulting curves are known as the "waveform" (i.e. the form of the wave.) The wave shown here represents a constant tone at a set frequency.</em>
Yes it will affect the ph level
Answer:
1. How did the tidal wave affect the predicted frequencies of the alleles in the population?
No changes
2. What is the frequency of the recessive allele?
q= 0.6
Explanation:
If we assume that all individuals were equally likely to be wiped out, that means the frequency/ratio of the gene and genotype of the population will not change. The tidal wave killing 100 out of 200, so it simply makes the population become half of it used to be.
If the population at equilibrium, we can use the Hardy-Weinberg formula to find out the expected frequency of the dominant and recessive alleles. There are 36 homozygous recessives out of 100, so the frequency of the recessive allele will be:
q^2 = 36/100
q= √36/100= 6/10= 0.6
The calvin cycle occurs only when Carbon Dioxide is captured
Answer:
The teeth in the mouth bite off a piece of food.
The teeth continue to break the food into smaller pieces.
Saliva rushes into the mouth and mixes with the broken-down food.
The food travels down the esophagus.
The muscles of the stomach churn the food and continue to break it down.
The broken-down food, called chyme, enters the small intestine.
The remaining food passes into the large intestine. Water is absorbed from the large intestine and the rest of
the material is stored as solid waste until it is excreted from the body.
Explanation: