The cross product of two vectors gives a third vector

that is orthogonal to the first two.

Normalize this vector by dividing it by its norm:

To get another vector orthogonal to the first two, you can just change the sign and use

.
Answer:
The Least Common Denominator of 3/4, 4/5 and 2/3
Would be,
4 × 5 × 3 = 60
<em><u>Hence</u></em><em><u>,</u></em>
<em><u>60</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>L.C.D</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>3</u></em><em><u>/</u></em><em><u>4</u></em><em><u>,</u></em><em><u> </u></em><em><u>4</u></em><em><u>/</u></em><em><u>5</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>2</u></em><em><u>/</u></em><em><u>3</u></em>
Answer:
HERE IS YOUR ANSWER
Step-by-step explanation:
Use the mirror equation:
1/di + 1/do = 1/f
where di = -10 cm and f = +15 cm. (Note that di is negative if the image is virtual.)
Substitute and solve for do.
1/do + 1/(-10 cm) = 1/(15 cm)
1/do = 1/(15 cm) - 1/(-10 cm) = 5/(30 cm)
do = 6 cm
Hope it helps you
Regards,
Rachana
Answer:
3/10
Step-by-step explanation:
Subtract the sum of 1/3, 4/15 and 1/10 from 1:
10/30 + 8/30 + 3/30 = 21/30, or 7/10
Then: 1 - 7/10 = 3/10