Answer:
Wonka bars=3 and Everlasting Gobstoppers=24
Step-by-step explanation:
let the wonka bars be X
and everlasting gobstoppers be Y
the objective is to
maximize 1.3x+3.2y=P
subject to constraints
natural sugar
4x+2y=60------1
sucrose
x+3y=75---------2
x>0, y>0
solving 1 and 2 simultaneously we have
4x+2y=60----1
x+3y=75------2
multiply equation 2 by 4 and equation 1 by 1 to eliminate x we have
4x+2y=60
4x+12y=300
-0-10y=-240
10y=240
y=240/10
y=24
put y=24 in equation 2 we have'
x+3y=75
x+3(24)=75
x+72=75
x=75-72
x=3
put x=3 and y=24 in the objective function we have
maximize 1.3x+3.2y=P
1.3(3)+3.2(24)=P
3.9+76.8=P
80.7=P
P=$80.9
Answer:
1:10
Step-by-step explanation:
the ratio we can it is

so the ratio is 1:10
I assume that the parabola in this particular problem is one whose axis of symmetry is parallel to the y axis. The formula we're going to use in this case is (x-h)2=4p(y-k). We know variables h and k from the vertex (1,20) but p is not given. However, we can solve for p by substituting values x and y in the formula with the y-intercept:
(0-1)^2=4p(16-20)
Solving for p, p=-1/16.
Going back to the formula, we can finally solve for the x-intercepts. Simply fill in variables p, h and k then set y to zero:
(x-1)^2=4(-1/16)(0-20)
(x-1)^2=5
x-1=(+-)sqrt(5)
x=(+-)sqrt(5)+1
Here, we have two values of x
x=sqrt(5)+1 and
x=-sqrt(5)+1
thus, the answers are: (sqrt(5)+1,0) and (-sqrt(5)+1,0).
- 8x - 9 = - 21
Add 9 to both sides:
- 8x = - 12
Divide both sides by - 8:
x = -12/-8
x = -3/-2
x = 3/2 OR 1.5
Hope this answer helps :)
No. he used 50% on the rides, and we have to convert the fraction to a percent by dividing 4&1 which equals 0.25, then we multiply that by 100 to get the percentage he used on video games which equals 25%. 50+25= 75% used tickets for both rides and video games. So then we subtract 75 from 100 and get 25% which means he used 25% of the tickets on batting cages. Your answer is no, he used 25% of his tickets on the batting cages.