Answer:
<h3>Graph 3</h3>
Line starting at x = -2
- <u>Domain</u>: x ≥ -2
- <u>Range</u>: y ≥ 0
<h3>Graph 4</h3>
Vertical line
- <u>Domain</u>: x = 3
- <u>Range</u>: y = any real number
<h3>Graph 5</h3>
Quadratic function with negative leading coefficient and max value of 3
- <u>Domain</u>: x = any real number
- <u>Range</u>: y ≤ 3
<h3>Graph 6</h3>
Curve with non-negative domain and min value of -2
- <u>Domain</u>: x ≥ 0
- <u>Range</u>: y ≥ -2
<h3>Graph 7</h3>
Line with no restriction
- <u>Domain</u>: x = any real number
- <u>Range</u>: y = any real number
<h3>Graph 8</h3>
Quadratic function with positive leading coefficient and min value of 4
- <u>Domain</u>: x = any real number
- <u>Range</u>: y ≥ 4
<h3>Graph 9</h3>
Parabola with restriction at x = -4
- <u>Domain</u>: x = any real number except -4
- <u>Range</u>: y = any real number
<h3>Graph 10</h3>
Square root function with star point (2, 0)
- <u>Domain</u>: x ≥ 2
- <u>Range</u>: y ≥ 0
C. 3x + 7 because you can factor out the other 3.
a. 16+4x=4(4+X)
b. 25x+30y=5(5x+6y)
d. 40x-30y = 5(8x-6y)
hope this helps!
The answer is 15:27 then simplify it to 5:9
hope it helps! <3
Answer:
y = −32
Step-by-step explanation:
Isolate the variable by dividing each side by factors that don't contain the variable.
Answer:
82 degrees
let the point where the lines cross be E
ABD angle is 108 / 2 = 54 degrees
CAB angle is 56 / 2 = 28 degrees
the missing angle in ABE triangle is 180-54-28=98 degrees. angle x is 180 - 98 = 82