Step-by-step explanation:
Among these three options , Option B is the correct answer.
GF||JK
So,m<F= m<K. ( alternate interior angles)
and , m<G= m<J. (alternate interior angles)
so ∆FGH similar to∆KJH
U times all them together then u times them by 2 that would be your awnser
Answer:
Angle EFG = 82 degrees; Angle GFH = 98 degrees
Step-by-step explanation:
Linear pairs are angles that are placed side by side. When you add them together, you get 180 degrees.
Show work:
3n + 22 + 4n + 18 = 180
7n + 40 = 180
7n = 140
n = 20
Plug in the variable:
Angle EFG:
3(20) + 22
60 + 22
Angle EFG = 82 degrees
Angle GFH
4(20) + 18
80 + 18
Angle GFH = 98
Check:
98+ 82 = 180 degrees
180 degrees was the total so the answer is correct.
![\begin{array}{llll} \textit{Logarithm of rationals} \\\\ \log_a\left( \frac{x}{y}\right)\implies \log_a(x)-\log_a(y) \end{array}~\hfill \begin{array}{llll} \textit{Logarithm Cancellation Rules} \\\\ log_a a^x = x\qquad \qquad \underset{\stackrel{\uparrow }{\textit{let's use this one}}}{a^{log_a x}=x} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bllll%7D%20%5Ctextit%7BLogarithm%20of%20rationals%7D%20%5C%5C%5C%5C%20%5Clog_a%5Cleft%28%20%5Cfrac%7Bx%7D%7By%7D%5Cright%29%5Cimplies%20%5Clog_a%28x%29-%5Clog_a%28y%29%20%5Cend%7Barray%7D~%5Chfill%20%5Cbegin%7Barray%7D%7Bllll%7D%20%5Ctextit%7BLogarithm%20Cancellation%20Rules%7D%20%5C%5C%5C%5C%20log_a%20a%5Ex%20%3D%20x%5Cqquad%20%5Cqquad%20%5Cunderset%7B%5Cstackrel%7B%5Cuparrow%20%7D%7B%5Ctextit%7Blet%27s%20use%20this%20one%7D%7D%7D%7Ba%5E%7Blog_a%20x%7D%3Dx%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

notice, -2 is a valid value for the quadratic, however, the argument value for a logarithm can never 0 or less, it has to be always greater than 0, so for the logarithmic expression with (x-2), using x = -2 will give us a negative value, so -2 is no dice.
Answer: 2
Step-by-step explanation: x^2+8/x^2-5x+6
= x4 - 5x3 + 6x2 + 8
/x^2=2
Find roots (zeroes) of : F(x) = x4 - 5x3 + 6x2 + 8
See theory in step 3.2
In this case, the Leading Coefficient is 1 and the Trailing Constant is 8.
The factor(s) are:
of the Leading Coefficient : 1
of the Trailing Constant : 1 ,2 ,4 ,8
Let us test ....
P Q P/Q F(P/Q) Divisor
-1 1 -1.00 20.00
-2 1 -2.00 88.00
-4 1 -4.00 680.00
-8 1 -8.00 7048.00
1 1 1.00 10.00
2 1 2.00 8.00
4 1 4.00 40.00
8 1 8.00 1928.00
2