Answer:
1:350 i think
Step-by-step explanation:
i could be wrong
Answer:
Option 2 is correct.
Step-by-step explanation:
Given the coordinates of lines segment (3, 10) and (7, 8). we have to find the mid-point of given line segment.
Mid-point formula states that if
and
are the coordinates of end points of line segment then the coordinates of mid-point are
![(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})](https://tex.z-dn.net/?f=%28%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D%2C%5Cfrac%7By_1%2By_2%7D%7B2%7D%29)
∴ Coordinates of mid-point of line segment joining the points (3, 10) and (7, 8) are
![(\frac{3+7}{2},\frac{10+8}{2})=(\frac{10}{2},\frac{18}{2})=(5,9)](https://tex.z-dn.net/?f=%28%5Cfrac%7B3%2B7%7D%7B2%7D%2C%5Cfrac%7B10%2B8%7D%7B2%7D%29%3D%28%5Cfrac%7B10%7D%7B2%7D%2C%5Cfrac%7B18%7D%7B2%7D%29%3D%285%2C9%29)
Hence, option 2 is correct.
Answer:
he has 140 chickens because he has 10 times more chickens than ducks and he has 14 ducks so 14*10=140
Step-by-step explanation:
Answer:
D
Step-by-step explanation:
![\sin(30) = \frac{n}{ \frac{10 \sqrt{3} }{3} } \\ 0.5 = \frac{n}{5.77} \\ n = 2.88 = \frac{5 \sqrt{3} }{3}](https://tex.z-dn.net/?f=%20%5Csin%2830%29%20%20%3D%20%20%5Cfrac%7Bn%7D%7B%20%5Cfrac%7B10%20%5Csqrt%7B3%7D%20%7D%7B3%7D%20%7D%20%20%20%5C%5C%200.5%20%3D%20%20%5Cfrac%7Bn%7D%7B5.77%7D%20%5C%5C%20n%20%3D%202.88%20%3D%20%20%5Cfrac%7B5%20%5Csqrt%7B3%7D%20%7D%7B3%7D%20%20)
![\cos(30) = \frac{m}{ \frac{10 \sqrt{3} }{3} } \\ 0.866 = \frac{m}{5.77} \\ m = 5](https://tex.z-dn.net/?f=%20%5Ccos%2830%29%20%20%3D%20%20%5Cfrac%7Bm%7D%7B%20%5Cfrac%7B10%20%5Csqrt%7B3%7D%20%7D%7B3%7D%20%7D%20%20%5C%5C%200.866%20%3D%20%20%5Cfrac%7Bm%7D%7B5.77%7D%20%20%5C%5C%20m%20%3D%205)
The probability that the monthly payment is more than $1000 will be found as follows;
The payment is normally distributed, thus the z-score will be given by:
Z-score=(x-Mean)/(SD)
Mean=$982
SD=$180
Thus;
Z-score=(1000-982)/180=0.1
The probability associated with a z-score of 0.1 is 0.5398
Thus the probability that the monthly payment is more than $1000 will be:
P(x<1000)=1-0.5398=0.4602=46.02%