Answer:169.7
Step-by-step explanation:
To find the volume of a cylinder you can use the math formula πr^2H where r is the radius and H is the height. If you plug in the values you get π3^2(6) simplify 3^2 to get (9π)(6), you can multiply 9 by 6 to get 54 then multiply that by 3.1415 to get 169.65 which rounds to 169.7
Step-by-step explanation:
answer is first option,,,
Answer:
![32 {x}^{2} \sqrt[3]{ 2x } -8{x}^{3}](https://tex.z-dn.net/?f=32%20%7Bx%7D%5E%7B2%7D%20%5Csqrt%5B3%5D%7B%202x%20%7D%20%20%20%20-8%7Bx%7D%5E%7B3%7D)
Step-by-step explanation:
We want to
![4x \sqrt[3]{4 {x}^{2} } (2 \sqrt[3]{32 {x}^{2} } - x \sqrt[3]{2x} )](https://tex.z-dn.net/?f=4x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%7D%20%282%20%5Csqrt%5B3%5D%7B32%20%7Bx%7D%5E%7B2%7D%20%7D%20%20-%20x%20%5Csqrt%5B3%5D%7B2x%7D%20%29)
We expand to obtain:
![4x \sqrt[3]{4 {x}^{2} } \times 2 \sqrt[3]{32 {x}^{2} } -4x \sqrt[3]{4 {x}^{2} } \times x \sqrt[3]{2x} )](https://tex.z-dn.net/?f=4x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%7D%20%20%5Ctimes%202%20%5Csqrt%5B3%5D%7B32%20%7Bx%7D%5E%7B2%7D%20%7D%20%20-4x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%7D%20%5Ctimes%20%20x%20%5Csqrt%5B3%5D%7B2x%7D%20%29)
We now simplify
![8x \sqrt[3]{4 {x}^{2} \times 32 {x}^{2} } -4 {x}^{2} \sqrt[3]{4 {x}^{2} \times 2x}](https://tex.z-dn.net/?f=8x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%20%5Ctimes%2032%20%7Bx%7D%5E%7B2%7D%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%20%5Ctimes%202x%7D%20)
We multiply the radicand
![8x \sqrt[3]{64 \times {x}^{3} \times 2x } -4 {x}^{2} \sqrt[3]{8 {x}^{3}}](https://tex.z-dn.net/?f=8x%20%5Csqrt%5B3%5D%7B64%20%5Ctimes%20%7Bx%7D%5E%7B3%7D%20%20%5Ctimes%202x%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Csqrt%5B3%5D%7B8%20%7Bx%7D%5E%7B3%7D%7D%20)
Or
![8x \sqrt[3]{ {(4x)}^{3} \times 2x } -4 {x}^{2} \sqrt[3]{{(2x)}^{3}}](https://tex.z-dn.net/?f=8x%20%5Csqrt%5B3%5D%7B%20%7B%284x%29%7D%5E%7B3%7D%20%20%5Ctimes%202x%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Csqrt%5B3%5D%7B%7B%282x%29%7D%5E%7B3%7D%7D%20)
We take cube root to get:
![8x \times 4x\sqrt[3]{ 2x } -4 {x}^{2} \times 2x](https://tex.z-dn.net/?f=8x%20%20%5Ctimes%204x%5Csqrt%5B3%5D%7B%202x%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Ctimes%202x)
We multiply out to get:
![32 {x}^{2} \sqrt[3]{ 2x } -8{x}^{3}](https://tex.z-dn.net/?f=32%20%7Bx%7D%5E%7B2%7D%20%5Csqrt%5B3%5D%7B%202x%20%7D%20%20%20%20-8%7Bx%7D%5E%7B3%7D)