D = sqrt(3s^2) where s is the length of the side. Solving for s,
<span>3s^2 = d^2 iff </span>
<span>s^2 = d^2 / 3 iff </span>
<span>s = sqrt(d^2 / 3) </span>
<span>= d / sqrt(3) or d sqrt(3) / 3 </span>
<span>Surface area of the cube = 6 s^2. Thus, </span>
<span>A = 6 (d / sqrt(3))^2 </span>
<span>= 6d^2 / 3 </span>
<span>= 2d^2 </span>
<span>Volume = s^3. Thus, </span>
<span>V = (d / sqrt(3))^3 </span>
<span>= d^3 / 3sqrt(3) </span>
<span>= d^3 sqrt(3) / 9</span>
<span>(a+7) * (a-4)
a^2 - 4a + 7a - 28
a^2 + 3a - 28</span>
This is an enlarged dilation
3x + 2y + y - 3x = 180
3y = 180
y = 180/3
y = 60
3x = y - 3x
Let y = 60
3x = 60 - 3x
3x + 3x = 60
6x = 60
x = 60/6
x = 10
Answer: x = 10, y = 60