Answer:
h = 6 units
Step-by-step explanation:
The formula for the volume of a tetrahedron is given as :
V = sh
Where
s is area of base and h is height
Put s = 8 and V = 48 to find h as follows :

So, the height of the tetrahedron is 6 units.
I don’t know the answer I’m sorry
Complete Questions:
Find the probability of selecting none of the correct six integers in a lottery, where the order in which these integers are selected does not matter, from the positive integers not exceeding the given integers.
a. 40
b. 48
c. 56
d. 64
Answer:
a. 0.35
b. 0.43
c. 0.49
d. 0.54
Step-by-step explanation:
(a)
The objective is to find the probability of selecting none of the correct six integers from the positive integers not exceeding 40.
Let s be the sample space of all integer not exceeding 40.
The total number of ways to select 6 numbers from 40 is
.
Let E be the event of selecting none of the correct six integers.
The total number of ways to select the 6 incorrect numbers from 34 numbers is:

Thus, the probability of selecting none of the correct six integers, when the order in which they are selected does rot matter is


Therefore, the probability is 0.35
Check the attached files for additionals
Answer:
1/3 is answer.
I hope you got it. I had added solved answer too.
plz mark brainliest
First Chart: Perimeter
Square Portion:
Original Side Lengths: P = 4 (1 + 1 + 1 + 1 ) =4
Double Side Lengths: P = 8 (2 x 4 = 8)
Triple Side Lengths: P = 12 (4 x 3 = 12)
Quadruple Side Lengths: P = 16 (4 x 4 = 16)
Rectangle Portion:
Original Side Lengths: P = 6 (1 x 2 + 2 x 2 = 6)
Double Side Lengths: P = 12 (2 x 2 + 4 x 2 = 12)
Triple Side Lengths: P = 24 (4 x 2 + 8 x 2 = 24)
Quadruple Side Lengths: P = 48 (8 x 2 + 16 x 2 = 48)
Second Chart: Area
Square Portion:
Original Side Lengths: A = 1 (1 x 1 = 1)
Double Side Lengths: A = 4 (2 x 2 = 4)
Triple Side Lengths: A = 9 (3 x 3 = 9
Quadruple Side Lengths: A = 16 ( 4 x 4 = 16)
Rectangle Portion:
Original Side Lengths: A = 2 ( 1 x 2 = 2 )
Double Side Lengths: A = 8 ( 2 x 4 = 8)
Triple Side Lengths: A = 18 ( 3 x 6 = 18)
Quadruple Side Lengths: A = 32 (4 x 8 = 32)