Answer:
$110.37
Step-by-step explanation:
Assuming the monthly payment is made at the beginning of the month, the formula for the monthly payment P that gives future value A will be ...
... A = P(1+r/12)((1+r/12)^(nt) -1)/(r/12) . . . . n=compoundings/year, t=years
... 14000 = P(1+.11/12)((1+.11/12)^(12·7) -1)/(.11/12)
... 14000 = P(12.11)((1+.11/12)^84 -1)/0.11 ≈ P·126.84714 . . . . fill in the given values
... P = 14000/126.84714 = 110.37 . . . . . divide by the coefficient of P
They should deposit $110.37 at the beginning of each month.
Answer:
Step-by-step explanation:
The answer is 10.0
The answer is D. 5^-2 times 5^4.
We have this equation:

So, we need to solve this equation for L. Then we sum -2W in each member of the equation, like this:


Then, dividing the equation by 2:

Finally, let's order this equation: