1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mina [271]
2 years ago
15

Simplify the expression. -3(1+n)-6n

Mathematics
2 answers:
Firlakuza [10]2 years ago
7 0
-3 - 9n I am 100% sure this is the answer I hope this helped
BabaBlast [244]2 years ago
5 0

Answer:

− 3 − 9 n

Step-by-step explanation:

Simplify the expression

You might be interested in
Plsssssssssssssss help me nobody knows how to do it and its due tonight
inessss [21]
I believe it’s 1.5558 x 10 to the 4th power
5 0
2 years ago
Read 2 more answers
Which equation is equivalent to
Alexeev081 [22]
It y=4z-3/6 BOOMM done for ya
7 0
3 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
sean lives about 15.5 miles from the airport which number rounds to 15.5 when ronded to nearest tenth
goldfiish [28.3K]

16.0Answer:

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Brainliest, what is the total measure of angles 8 and 5 of angle 7 equals 61
guapka [62]
Lines equal 180°. The line with angles 5 and 7 equals 180°. If angle 7 equals 61°, then angle 5 equals 119° (180° - 61°= 119°).

Angles 5 and 8 are opposite vertical angles, which are always congruent (equal), so angles 5 and 8 both equal 119°.

119° (angle 5) + 119° (angle 8)= 238°


ANSWER: The two angles total 238° (bottom choice).

Hope this helps! :)
7 0
3 years ago
Other questions:
  • A scuba diver is 3.8 meters below the surface of the water. He is descending at a rate of 0.5 meters per minute.
    7·2 answers
  • in his first three rounds of golf, Jon scored 72, 78, and 73. What is the highest score he can earn in his fourth round and stil
    6·1 answer
  • The cylinders are similar the volume of the larger cylinder is 9648 cubic inches what is the volume of the smaller cylinder
    12·2 answers
  • In math is. about 20 miles per hour add or subtract
    7·2 answers
  • ASSIGNMENTS
    12·1 answer
  • To skate at Roller Heaven, each person must pay a membership fee (m) and a fee for each session (f). Art attended five sessions
    9·1 answer
  • A shirt regularly priced at $36.00 was on sale for 25% off.
    5·1 answer
  • Write a real life scenario that can be represented by the integer –55.
    11·1 answer
  • To solve the system of equations by elimination, what could you multiply each equation by to cancel out the x-variable?A:6x-3y=-
    9·1 answer
  • Bob's can make 10 hamburgers in 3 minutes. How many
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!