1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marat540 [252]
2 years ago
9

You average weekly pay for the past six weeks is $140. What do you need to earn on the seventh week for the average to be $145?​

Mathematics
1 answer:
valentinak56 [21]2 years ago
7 0

Answer:

$175

Step-by-step explanation:

140x6+seventh seek pay/7=145

You might be interested in
Gatorade come in two different sizes. A 16 ounce bottle costs 2.10 and a 20 ounce bottle costs $3.15. Which is the better buy an
sattari [20]
16/ 2.10 = 7.6 ounces per $1
20/ 3.15 = 6.3 ounces per $1
So which do you think?
6 0
3 years ago
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
3 years ago
The sides of a triangle are 1, x, and x2. what are possible values of x?
Whitepunk [10]
The sides of the triangle are given as 1, x, and x².

The principle of triangle inequality requires that the sum of the lengths of any two sides should be equal to, or greater than the third side.

Consider 3 cases
Case (a):  x < 1,
      Then in decreasing size, the lengths are 1, x, and x².
      We require that x² + x ≥ 1
      Solve x² + x - 1 = 
      x = 0.5[-1 +/- √(1+4)] = 0.618 or -1.618.
      Reject the negative length.
     Therefore, the lengths are 0.382, 0.618 and 1.

Case (b): x = 1
   This creates an equilateral triangle with equal sides
    The sides are 1, 1 and 1.

Case (c): x>1
  In increasing order, the lengths are 1, x, and x².
  We require that x + 1 ≥ x²
  Solve x² - x - 1 = 0
  x = 0.5[1 +/- √(1+4)] = 1.6118 or -0.618
  Reject the negative answr.
 The lengths are 1, 1.618 and 2.618.

Answer:
The possible lengths of the sides are
(a) 0.382, 0.618 and 1
(b) 1, 1 and 1.
(c) 2.618, 1.618 and 1.

7 0
3 years ago
In a class, 64 offers mathematics while 94 offers chemistry , How many will offer the both course?
Leokris [45]

Answer:

30

Step-by-step explanation:

94-64=30 will offer the same course because the chemistry offers ocerride the mathematics offers

7 0
3 years ago
-3 3/7 * 2 1/2 Has o be in simplest form!
OverLord2011 [107]

Answer:

-8.57142857143

Step-by-step explanation:

-8.57142857143

6 0
3 years ago
Read 2 more answers
Other questions:
  • Which statement accurately represents the relations between pressure and volume
    8·1 answer
  • There were 137 adult dusky gopher frogs in 2014. The number of adult dusky gopher frogs has grown about 9% per year since then.
    7·1 answer
  • angle EFG and angle GFH are a linear pair, m angle GFH= 2n+38 and m angle GFH=2n+38. what are m angle EFG and m angle GFH
    5·2 answers
  • Solve (x + 4)2 – 3(x + 4) – 3 = 0 using substitution.
    13·2 answers
  • Someone please help me <br> Find the value of x .<br> A) 80 <br> B) 100<br> C) 130 <br> D)120
    7·1 answer
  • Paloma plotted two different integers with the same absolute value on a number line. The distance between the two numbers must b
    10·2 answers
  • In circle J with \text{m} \angle HLK= 30^{\circ}m∠HLK=30
    5·1 answer
  • 14) Simplify: -(16 - 5x) A) 5x - 16 B) 5x + 16 C) -5x - 16 D) - 5x + 16
    15·1 answer
  • in an abc triangle, the hypotenuse is 10 and the other sides are x, the measurement of angle B is 90 deg, what is the value of x
    5·1 answer
  • 2(q–8)&lt; – 10 solve for q
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!