1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
m_a_m_a [10]
3 years ago
15

Graph the image of Kite BCDE after a translation 5 units down.​

Mathematics
2 answers:
nekit [7.7K]3 years ago
8 0
You are literally going to take the points and move them down 5 units. Ex.) e will become (-10,0)
Vitek1552 [10]3 years ago
5 0

Answer:

Move each point, one by one, 5 units down

so, D(-7,10) becomes D^{1}(-7,5). Y value was decreased by 5

You might be interested in
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
Hope someone can help me with this
RoseWind [281]
(192/16)*4.55*1.43 = 39039/500 =78.078
7 0
4 years ago
Describe the relationship between 2/3 of 3/4 and 3/4 of 2/3?
nexus9112 [7]
The relationship between 2/3 of 3/4 and 3/4 of 2/3 is that the product will equal the same because in multiplication, it doesn't matter what order you put the numbers in because it will equal the same product.
5 0
3 years ago
Plz help, 15 points!
Eduardwww [97]

Answer:

2x+3y=-6

Step-by-step explanation:

Let the line is y=mx+b where m is slope and b is y-intercept.

The line is parallel to 2x+3y=3, slope of both the lines will be same.

Find the slope of 2x+3y=3

3y=3-2x\\y=-\frac{2}{3}x+1

Slope of line=-\frac{2}{3}

m=-\frac{2}{3}

So the line will be y=-\frac{2}{3}x+b

It passes through (3,-4).

-4=-\frac{2}{3}\times 3+b\\-4=-2+b\\b=-2\\

Hence the line is y=-\frac{2}{3}x-2

y=-\frac{2}{3}x-2\\3y=-2x-6\ \ \ \ \ \ \ (Multiply both sides by 3)\\2x+3y=-6

6 0
3 years ago
A population has the following characteristics. (a) A total of 75% of the population survives the first year. Of that 75%, 25% s
Artemon [7]

Answer:

= \left[\begin{array}{ccc}1344\\84\\28\end{array}\right]  \left \begin{array}{ccc}{0 \  \leq  age   \leq  1 }\\{ 1 \  \leq  age   \leq  2 }\\{2 \  \leq  age  \leq 3}\end{array}\right

i.e after the first year ;

there 1344 members in the first age class

84 members for the second age class; and

28 members for the third age class

Step-by-step explanation:

We can deduce that the age distribution vector x represents the number of population members for each age class; Given that in each class of age there are 112 members present.

The current age distribution vector is as follows:

x = \left[\begin{array}{ccc}1&1&2\\1&1&2\\1&1&2\end{array}\right] \left[\begin{array}{ccc}{0 \  \leq  age   \leq  1 }\\{ 0 \  \leq  age   \leq  2 }\\{0 \  \leq  age   \leq 3}\end{array}\right]

Also , the age transition matrix is as follows:

L = \left[\begin{array}{ccc}3&6&3\\0.75&0&0 \\0&0.25&0\end{array}\right]

After 1 year ; the age distribution vector will be :

x_2 =Lx_1 = \left[\begin{array}{ccc}3&6&3\\0.75&0&0 \\0&0.25&0\end{array}\right]  \left[\begin{array}{ccc}1&1&2\\1&1&2\\1&1&2\end{array}\right]

= \left[\begin{array}{ccc}1344\\84\\28\end{array}\right]  \left \begin{array}{ccc}{0 \  \leq  age   \leq 1 }\\{ 1 \  \leq  age   \leq  2 }\\{2 \  \leq  age   \leq  3}\end{array}\right

6 0
3 years ago
Other questions:
  • Which of the following is an arithmetic sequence? <br> 0,2,4,6<br> 1,2,4,8<br> 1,4,8,13
    13·1 answer
  • Which relation represents a function
    11·1 answer
  • Which of the equations shown have infinitely many solutions? Select all that apply.
    5·2 answers
  • How do you find an a percent of an item
    8·1 answer
  • Find the value of X.​
    14·1 answer
  • Find the period of the function y= 5 cos 1/2x
    5·1 answer
  • I thought of the smallest counting number that is divisible by 10, 14, and 35...what is my number?
    11·1 answer
  • Estimate the value of \frac{\sqrt{2\pi }}{\sqrt{5}}
    12·1 answer
  • Guys please, please help!!
    15·2 answers
  • Help please need to do this ASAP
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!